Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum information processing and quantum optics with circuit quantum electrodynamics

Abstract

Since the first observation of coherent quantum behaviour in a superconducting qubit, now more than 20 years ago, there have been substantial developments in the field of superconducting quantum circuits. One such advance is the introduction of the concepts of cavity quantum electrodynamics (QED) to superconducting circuits, to yield what is now known as circuit QED. This approach realizes in a single architecture the essential requirements for quantum computation, and has already been used to run simple quantum algorithms and to operate tens of superconducting qubits simultaneously. For these reasons, circuit QED is one of the leading architectures for quantum computation. In parallel to these advances towards quantum information processing, circuit QED offers new opportunities for the exploration of the rich physics of quantum optics in novel parameter regimes in which strongly nonlinear effects are readily visible at the level of individual microwave photons. We review circuit QED in the context of quantum information processing and quantum optics, and discuss some of the challenges on the road towards scalable quantum computation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Realizations of circuit QED.
Fig. 2: Vacuum Rabi splitting.
Fig. 3: Wigner functions W(α) of the microwave fields.
Fig. 4: QEC hardware.
Fig. 5: Quantum hardware.
Fig. 6: Three-dimensional integration of superconducting qubits.

References

  1. 1.

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  2. 2.

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Google Scholar 

  3. 3.

    Nakamura, Y., Pashkin, Y. & Tsai, J. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999). This paper reports the observation of coherent quantum dynamics in superconducting quantum circuits.

    ADS  Google Scholar 

  4. 4.

    Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    ADS  Google Scholar 

  5. 5.

    Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    ADS  Google Scholar 

  6. 6.

    Martinis, J. M., Devoret, M. H. & Clarke, J. Quantum Josephson junctions and the dawn of artificial atoms. Nat. Phys. https://doi.org/10.1038/s41567-020-0829-5 (2020).

  7. 7.

    Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004). This paper theoretically introduces the circuit QED architecture.

    ADS  Google Scholar 

  8. 8.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). This paper experimentally demonstrates circuit QED, in particular reporting the observation of vacuum Rabi splitting.

    ADS  Google Scholar 

  9. 9.

    Haroche, S., Brune, M. & Raimond, J. M. From cavity to circuit quantum electrodynamics. Nat. Phys. https://doi.org/10.1038/s41567-020-0812-1 (2020).

  10. 10.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). This paper reports ‘quantum supremacy’ with transmon qubits and circuit QED-based dispersive readout.

    ADS  Google Scholar 

  11. 11.

    Pozar, D. M. Microwave Engineering (Wiley, 2012).

  12. 12.

    Vool, U. & Devoret, M. Introduction to quantum electromagnetic circuits. Int. J. Circuit Theor. Appl. 45, 897–934 (2017).

    Google Scholar 

  13. 13.

    Megrant, A. et al. Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012).

    ADS  Google Scholar 

  14. 14.

    Vissers, M. R., Kline, J. S., Gao, J., Wisbey, D. S. & Pappas, D. P. Reduced microwave loss in trenched superconducting coplanar waveguides. Appl. Phys. Lett. 100, 082602 (2012).

    ADS  Google Scholar 

  15. 15.

    Bruno, A. et al. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106, 182601 (2015).

    ADS  Google Scholar 

  16. 16.

    Calusine, G. et al. Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Appl. Phys. Lett. 112, 062601 (2018).

    ADS  Google Scholar 

  17. 17.

    Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    ADS  Google Scholar 

  18. 18.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  19. 19.

    Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    ADS  Google Scholar 

  20. 20.

    Sheldon, S. et al. Characterizing errors on qubit operations via iterative randomized benchmarking. Phys. Rev. A 93, 012301 (2016).

    ADS  Google Scholar 

  21. 21.

    Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999).

    ADS  Google Scholar 

  22. 22.

    Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    ADS  Google Scholar 

  23. 23.

    Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    ADS  Google Scholar 

  24. 24.

    Gyenis, A. et al. Experimental realization of an intrinsically error-protected superconducting qubit. Preprint at https://arxiv.org/abs/1910.07542 (2019).

  25. 25.

    Kjaergaard, M. et al. Superconducting qubits: current state of play. Preprint at https://arxiv.org/abs/1905.13641 (2019).

  26. 26.

    Wendin, G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017).

    ADS  MathSciNet  Google Scholar 

  27. 27.

    Bloch, F. & Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940).

    ADS  Google Scholar 

  28. 28.

    Devoret, M., Girvin, S. M. & Schoelkopf, R. J. Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys 16, 767–779 (2007).

    MATH  Google Scholar 

  29. 29.

    Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011). This paper introduces the ‘3D transmon’.

    ADS  Google Scholar 

  30. 30.

    Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y.-x & Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  31. 31.

    Thompson, R., Rempe, G. & Kimble, H. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    ADS  Google Scholar 

  32. 32.

    Boca, A. et al. Observation of the vacuum rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004).

    ADS  Google Scholar 

  33. 33.

    Maunz, P. et al. Normal-mode spectroscopy of a single-bound-atom–cavity system. Phys. Rev. Lett. 94, 033002 (2005).

    ADS  Google Scholar 

  34. 34.

    Gardiner, C. W. Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing. Phys. Rev. Lett. 56, 1917–1920 (1986).

    ADS  Google Scholar 

  35. 35.

    Carmichael, H. J., Lane, A. S. & Walls, D. F. Resonance fluorescence from an atom in a squeezed vacuum. Phys. Rev. Lett. 58, 2539–2542 (1987).

    ADS  Google Scholar 

  36. 36.

    Carmichael, H. J. Viewpoint: squeezed light reengineers resonance fluorescence. Physics 9, 77 (2019).

    Google Scholar 

  37. 37.

    Turchette, Q. A., Georgiades, N. P., Hood, C. J., Kimble, H. J. & Parkins, A. S. Squeezed excitation in cavity QED: experiment and theory. Phys. Rev. A 58, 4056–4077 (1998).

    ADS  Google Scholar 

  38. 38.

    Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).

    Google Scholar 

  39. 39.

    Murch, K. W., Weber, S. J., Beck, K. M., Ginossar, E. & Siddiqi, I. Suppression of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013).

    ADS  Google Scholar 

  40. 40.

    Toyli, D. M. et al. Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016).

    Google Scholar 

  41. 41.

    Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008).

    ADS  Google Scholar 

  42. 42.

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    ADS  Google Scholar 

  43. 43.

    Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    ADS  Google Scholar 

  44. 44.

    Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbruggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    ADS  Google Scholar 

  45. 45.

    Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    ADS  Google Scholar 

  46. 46.

    Campagne-Ibarcq, P. et al. A stabilized logical quantum bit encoded in grid states of a superconducting cavity. Preprint at https://arxiv.org/abs/1907.12487 (2019).

  47. 47.

    Blais, A. et al. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007).

    ADS  Google Scholar 

  48. 48.

    Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    ADS  Google Scholar 

  49. 49.

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  50. 50.

    Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    ADS  Google Scholar 

  51. 51.

    Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    ADS  Google Scholar 

  52. 52.

    Elder, S. S. et al. High-fidelity measurement of qubits encoded in multilevel superconducting circuits. Phys. Rev. X 10, 011001 (2020).

    Google Scholar 

  53. 53.

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    ADS  Google Scholar 

  54. 54.

    Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A 93, 060302 (2016).

    ADS  Google Scholar 

  55. 55.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  Google Scholar 

  56. 56.

    Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    ADS  Google Scholar 

  57. 57.

    Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  58. 58.

    Kitaev, A. Y. Fault-tolerant computation by anyons. Ann. Phys. 303, 2–30 (2003). This paper describes topologically protected logical qubits.

    ADS  MathSciNet  MATH  Google Scholar 

  59. 59.

    Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    ADS  Google Scholar 

  60. 60.

    Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001).

    ADS  Google Scholar 

  61. 61.

    Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    ADS  Google Scholar 

  62. 62.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS  Google Scholar 

  63. 63.

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    ADS  Google Scholar 

  64. 64.

    Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    ADS  Google Scholar 

  65. 65.

    Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    ADS  Google Scholar 

  66. 66.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Google Scholar 

  67. 67.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016). This paper reports QEC with a bosonic ‘cat code’ that reaches the break-even point.

    ADS  Google Scholar 

  68. 68.

    Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Google Scholar 

  69. 69.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  70. 70.

    Yoder, T. J., Takagi, R. & Chuang, I. L. Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6, 031039 (2016).

    Google Scholar 

  71. 71.

    Kapit, E. Error-transparent quantum gates for small logical qubit architectures. Phys. Rev. Lett. 120, 050503 (2018).

    ADS  Google Scholar 

  72. 72.

    Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  73. 73.

    Hann, C. T. et al. Robust readout of bosonic qubits in the dispersive coupling regime. Phys. Rev. A 98, 022305 (2018).

    ADS  Google Scholar 

  74. 74.

    Reinhold, P. et al. Error-corrected gates on an encoded qubit. Preprint at https://arxiv.org/abs/1907.12327 (2019).

  75. 75.

    Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Preprint at https://arxiv.org/abs/1909.06803 (2019).

  76. 76.

    Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).

    ADS  Google Scholar 

  77. 77.

    Puri, S. et al. Stabilized cat in a driven nonlinear cavity: a fault-tolerant error syndrome detector. Phys. Rev. X 9, 041009 (2019).

    Google Scholar 

  78. 78.

    Puri, S. et al. Bias-preserving gates with stabilized cat qubits. Preprint at https://arxiv.org/abs/1905.00450 (2019).

  79. 79.

    Guillaud, J. & Mirrahimi, M. Repetition cat-qubits: fault-tolerant quantum computation with highly reduced overhead. Phys. Rev. X 9, 041053 (2019).

    Google Scholar 

  80. 80.

    Grimm, A. et al. The Kerr-cat qubit: stabilization, readout, and gates. Preprint at https://arxiv.org/abs/1907.12131 (2019).

  81. 81.

    Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Preprint at https://arxiv.org/abs/1907.11729 (2019).

  82. 82.

    Chao, R. & Reichardt, B. W. Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4, 42 (2018).

    ADS  Google Scholar 

  83. 83.

    Takita, M. et al. Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016).

    ADS  Google Scholar 

  84. 84.

    Córcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).

    ADS  Google Scholar 

  85. 85.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    ADS  Google Scholar 

  86. 86.

    Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    ADS  Google Scholar 

  87. 87.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). This paper is a pedagogical review of surface codes.

    ADS  Google Scholar 

  88. 88.

    Litinski, D. & von Oppen, F. Quantum computing with Majorana fermion codes. Phys. Rev. B 97, 205404 (2018).

    ADS  Google Scholar 

  89. 89.

    Litinski, D. & von Oppen, F. Lattice surgery with a twist: simplifying clifford gates of surface codes. Quantum 2, 62 (2018).

    Google Scholar 

  90. 90.

    Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).

    Google Scholar 

  91. 91.

    O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small surface codes under current and projected experimental noise. npj Quantum Inf. 3, 39 (2017).

    ADS  Google Scholar 

  92. 92.

    Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev. A 92, 040303 (2015).

    ADS  Google Scholar 

  93. 93.

    Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    Google Scholar 

  94. 94.

    Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    ADS  Google Scholar 

  95. 95.

    Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  96. 96.

    Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444–448 (2014).

    ADS  Google Scholar 

  97. 97.

    Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016). This paper introduces the family of binomial error correction codes.

    Google Scholar 

  98. 98.

    Leung, D. W., Nielsen, M. A., Chuang, I. L. & Yamamoto, Y. Approximate quantum error correction can lead to better codes. Phys. Rev. A 56, 2567–2573 (1997).

    ADS  Google Scholar 

  99. 99.

    Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).

    Google Scholar 

  100. 100.

    Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).

    ADS  Google Scholar 

  101. 101.

    Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001). This paper introduces the GKP ‘grid’ states for bosonic QEC.

    ADS  Google Scholar 

  102. 102.

    Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS  Google Scholar 

  103. 103.

    Albert, V. V. et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346 (2018).

    ADS  MathSciNet  Google Scholar 

  104. 104.

    Vuillot, C., Asasi, H., Wang, Y., Pryadko, L. P. & Terhal, B. M. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344 (2019).

    ADS  Google Scholar 

  105. 105.

    Tuckett, D. K. et al. Tailoring surface codes for highly biased noise. Phys. Rev. X 9, 041031 (2019).

    Google Scholar 

  106. 106.

    Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. Fault-tolerant thresholds for the surface code in excess of 5% under biased noise. Preprint at https://arxiv.org/abs/1907.02554 (2019).

  107. 107.

    DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000). This paper introduces the ‘Divincenzo criteria’ that any quantum computer must obey.

    ADS  MATH  Google Scholar 

  108. 108.

    Oliver, W. D. & Welander, P. B. Materials in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).

    Google Scholar 

  109. 109.

    Das, R. N. et al. Cryogenic qubit integration for quantum computing. In Proc. IEEE 68th Electronic Components and Technology Conference (ECTC) 504–514 (IEEE, 2018).

  110. 110.

    Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Google Scholar 

  111. 111.

    Jones, N. C. et al. Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012).

    Google Scholar 

  112. 112.

    Corcoles, A. et al. Challenges and opportunities of near-term quantum computing systems. Preprint at https://arxiv.org/abs/1910.02894 (2019).

  113. 113.

    Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).

    ADS  Google Scholar 

  114. 114.

    Barden, J. et al. A 28nm bulk-CMOS 4-to-8GHz <2mW cryogenic pulse modulator for scalable quantum computing. In Proc. IEEE 2019 International Solid State Circuits Conference 456–458 (IEEE, 2019).

  115. 115.

    Leonard, E. et al. Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019).

    ADS  Google Scholar 

  116. 116.

    Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    ADS  Google Scholar 

  117. 117.

    O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  118. 118.

    Wang, C. S. et al. Quantum simulation of molecular vibronic spectra on a superconducting bosonic processor. Preprint at https://arxiv.org/abs/1908.03598 (2019).

  119. 119.

    Ma, R. et al. A dissipatively stabilized mott insulator of photons. Nature 566, 51–57 (2019).

    ADS  Google Scholar 

  120. 120.

    Chiaro, B. et al. Growth and preservation of entanglement in a many-body localized system. Preprint at https://arxiv.org/abs/1910.06024 (2019).

  121. 121.

    Zheng, H., Silveri, M., Brierley, R. T., Girvin, S. M. & Lehnert, K. W. Accelerating dark-matter axion searches with quantum measurement technology. Preprint at https://arxiv.org/abs/1607.02529 (2016).

  122. 122.

    Wang, Z. et al. Quantum microwave radiometry with a superconducting qubit. Preprint at https://arxiv.org/abs/1909.12295 (2019).

  123. 123.

    Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).

    ADS  Google Scholar 

  124. 124.

    Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    ADS  Google Scholar 

  125. 125.

    Brecht, T. et al. Multilayer microwave integrate quantum circuits for scalable quantum computing. npj Quantum Inf. 2, 16002 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was undertaken thanks in part to funding from NSERC, Canada First Research Excellence Fund and the support from NSF DMR-1609326 and ARO W911NF-18-1-0212 is gratefully acknowledged. W.D.O. acknowledges funding in part by the US Army Research Office grant numbers W911NF-18-1-0411 and MURI W911NF-18-1-0218; the National Science Foundation grant number PHY-1720311; and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force contract number FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing, editing and revision of the manuscript.

Corresponding author

Correspondence to Alexandre Blais.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blais, A., Girvin, S.M. & Oliver, W.D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020). https://doi.org/10.1038/s41567-020-0806-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing