Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Moiré heterostructures as a condensed-matter quantum simulator

Abstract

Twisted van der Waals heterostructures have latterly received prominent attention for their many remarkable experimental properties and the promise that they hold for realizing elusive states of matter in the laboratory. We propose that these systems can, in fact, be used as a robust quantum simulation platform that enables the study of strongly correlated physics and topology in quantum materials. Among the features that make these materials a versatile toolbox are the tunability of their properties through readily accessible external parameters such as gating, straining, packing and twist angle; the feasibility to realize and control a large number of fundamental many-body quantum models relevant in the field of condensed-matter physics; and finally, the availability of experimental readout protocols that directly map their rich phase diagrams in and out of equilibrium. This general framework makes it possible to robustly realize and functionalize new phases of matter in a modular fashion, thus broadening the landscape of accessible physics and holding promise for future technological applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Moiré quantum simulator.

References

  1. 1.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    ADS  Google Scholar 

  2. 2.

    Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    MathSciNet  Google Scholar 

  3. 3.

    Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Google Scholar 

  4. 4.

    Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  5. 5.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  Google Scholar 

  6. 6.

    Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    ADS  Google Scholar 

  7. 7.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

  8. 8.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Google Scholar 

  9. 9.

    Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Google Scholar 

  10. 10.

    Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Google Scholar 

  11. 11.

    Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Google Scholar 

  12. 12.

    Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    ADS  Google Scholar 

  13. 13.

    Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Google Scholar 

  14. 14.

    Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    ADS  Google Scholar 

  15. 15.

    Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    ADS  Google Scholar 

  16. 16.

    He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    Google Scholar 

  17. 17.

    Yuan, N. F. Q. & Fu, L. Model for the metal–insulator transition in graphene superlattices and beyond. Phys. Rev. B 98, 045103 (2018).

    ADS  Google Scholar 

  18. 18.

    Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

    Google Scholar 

  19. 19.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  Google Scholar 

  20. 20.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS  Google Scholar 

  21. 21.

    Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    ADS  Google Scholar 

  22. 22.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  Google Scholar 

  23. 23.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  Google Scholar 

  24. 24.

    Xu, C. & Balents, L. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018).

    ADS  Google Scholar 

  25. 25.

    Liu, C.-C., Zhang, L.-D., Chen, W.-Q. & Yang, F. Chiral spin density wave and d + id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett. 121, 217001 (2018).

    ADS  Google Scholar 

  26. 26.

    Kennes, D. M., Lischner, J. & Karrasch, C. Strong correlations and d + id superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407 (2018).

    ADS  Google Scholar 

  27. 27.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  28. 28.

    Claassen, M., Kennes, D. M., Zingl, M., Sentef, M. A. & Rubio, A. Universal optical control of chiral superconductors and Majorana modes. Nat. Phys. 15, 766–770 (2018).

    Google Scholar 

  29. 29.

    Xian, L. et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Preprint at https://arxiv.org/abs/2004.02964 (2020). A study of twisted bilayer MoS2 shown to feature strongly asymmetric pxpy multi-orbital low-energy electronic bands.

  30. 30.

    Angeli, M. & MacDonald, A. γ-valley transition-metal-dichalcogenide moiré bands. Preprint at https://arxiv.org/abs/2008.01735 (2020).

  31. 31.

    Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    ADS  Google Scholar 

  32. 32.

    Xian, L., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multiflat bands and strong correlations in twisted bilayer boron nitride: doping-induced correlated insulator and superconductor. Nano Lett. 19, 4934–4940 (2019).

    ADS  Google Scholar 

  33. 33.

    Ni, G. X. et al. Soliton superlattices in twisted hexagonal boron nitride. Nat. Commun. 10, 4360 (2019).

    ADS  Google Scholar 

  34. 34.

    Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Google Scholar 

  35. 35.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS  Google Scholar 

  36. 36.

    Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS  Google Scholar 

  37. 37.

    Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    ADS  Google Scholar 

  38. 38.

    Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    ADS  Google Scholar 

  39. 39.

    Kagawa, F., Miyagawa, K. & Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 436, 534–537 (2005).

    ADS  Google Scholar 

  40. 40.

    Tajima, N., Sugawara, S., Tamura, M., Nishio, Y. & Kajita, K. Electronic phases in an organic conductor α-(BEDT-TTF)2I3: ultra narrow gap semiconductor, superconductor, metal, and charge-ordered insulator. J. Phys. Soc. Jpn 75, 051010–051010 (2006).

    ADS  Google Scholar 

  41. 41.

    Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).

    Google Scholar 

  42. 42.

    Kariyado, T. & Vishwanath, A. Flat band in twisted bilayer Bravais lattices. Phys. Rev. Res. 1, 033076 (2019).

    Google Scholar 

  43. 43.

    Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 1124 (2020).

    ADS  Google Scholar 

  44. 44.

    Harter, J. W., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    ADS  Google Scholar 

  45. 45.

    Harter, J. W. et al. Evidence of an improper displacive phase transition in Cd2Re2O7 via time-resolved coherent phonon spectroscopy. Phys. Rev. Lett. 120, 047601 (2018).

    ADS  Google Scholar 

  46. 46.

    Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    ADS  Google Scholar 

  47. 47.

    Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Google Scholar 

  48. 48.

    Wong, D. et al. Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015).

    ADS  Google Scholar 

  49. 49.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS  Google Scholar 

  50. 50.

    Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    ADS  Google Scholar 

  51. 51.

    Finney, N. R. et al. Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019).

    ADS  Google Scholar 

  52. 52.

    Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020).

    Google Scholar 

  53. 53.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS  Google Scholar 

  54. 54.

    Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    ADS  Google Scholar 

  55. 55.

    Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    ADS  Google Scholar 

  56. 56.

    Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Google Scholar 

  57. 57.

    Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    ADS  Google Scholar 

  58. 58.

    Kerelsky, A. et al. Moiré-less correlations in ABCA graphene. Preprint at https://arxiv.org/abs/1911.00007 (2019).

  59. 59.

    Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    ADS  MathSciNet  Google Scholar 

  60. 60.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    ADS  Google Scholar 

  61. 61.

    Shi, Z. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat. Phys. 10, 743–747 (2014).

    Google Scholar 

  62. 62.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  Google Scholar 

  63. 63.

    Liu, M., Sternbach, A. J. & Basov, D. N. Nanoscale electrodynamics of strongly correlated quantum materials. Rep. Prog. Phys. 80, 014501 (2016).

    ADS  Google Scholar 

  64. 64.

    Hesp, N. C. H. et al. Collective excitations in twisted bilayer graphene close to the magic angle. Preprint at https://arxiv.org/abs/1910.07893 (2019).

  65. 65.

    Halbertal, D. et al. Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun. 12, 242 (2021).

    Google Scholar 

  66. 66.

    McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    ADS  Google Scholar 

  67. 67.

    McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020).

    ADS  Google Scholar 

  68. 68.

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Google Scholar 

  69. 69.

    Soriano, D., Katsnelson, M. I. & Fernández-Rossier, J. Magnetic two-dimensional chromium thihalides: a theoretical perspective. Nano Lett. 20, 6225–6234 (2020).

    ADS  Google Scholar 

  70. 70.

    Hejazi, K., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721–10726 (2020).

    Google Scholar 

  71. 71.

    Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    ADS  Google Scholar 

  72. 72.

    Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    ADS  Google Scholar 

  73. 73.

    Chen, Y. et al. Strong correlations and orbital texture in single-layer 1t-TaSe2. Nat. Phys. 16, 218–224 (2020).

    Google Scholar 

  74. 74.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS  Google Scholar 

  75. 75.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Google Scholar 

  76. 76.

    Island, J. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    ADS  Google Scholar 

  77. 77.

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    ADS  Google Scholar 

  78. 78.

    Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    ADS  Google Scholar 

  79. 79.

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    ADS  Google Scholar 

  80. 80.

    Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    ADS  Google Scholar 

  81. 81.

    Darancet, P., Millis, A. J. & Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 90, 045134 (2014).

    ADS  Google Scholar 

  82. 82.

    Tang, F. et al. Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5. Nature 569, 537–541 (2019).

    ADS  Google Scholar 

  83. 83.

    Wu, F., Zhang, R.-X. & Sarma, S. D. Three-dimensional topological twistronics. Phys. Rev. Res. 2, 022010 (2020).

    Google Scholar 

  84. 84.

    Ruggenthaler, M., Tancogne-Dejean, N., Flick, J., Appel, H. & Rubio, A. From a quantum-electrodynamical light–matter description to novel spectroscopies. Nat. Rev. Chem. 2, 0118 (2018).

    Google Scholar 

  85. 85.

    Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. https://doi.org/10.1038/s41563-020-00801-7 (2020).

  86. 86.

    Mazza, G. & Georges, A. Superradiant quantum materials. Phys. Rev. Lett. 122, 017401 (2019).

    ADS  Google Scholar 

  87. 87.

    Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, 6969 (2018).

    ADS  Google Scholar 

  88. 88.

    Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2018).

    ADS  Google Scholar 

  89. 89.

    Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron–photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019).

    ADS  Google Scholar 

  90. 90.

    Thomas, A. et al. Exploring superconductivity under strong coupling with the vacuum electromagnetic field. Preprint at https://arxiv.org/abs/1911.01459 (2019).

  91. 91.

    Shimazaki, Y. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Google Scholar 

  92. 92.

    Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2018).

    Google Scholar 

  93. 93.

    Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  94. 94.

    Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

    Google Scholar 

  95. 95.

    Latini, S., Ronca, E., Giovannini, U. D., Hübener, H. & Rubio, A. Cavity control of excitons in two dimensional materials. Nano Lett. 19, 3473–3479 (2019).

    ADS  Google Scholar 

  96. 96.

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    ADS  Google Scholar 

  97. 97.

    Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    ADS  Google Scholar 

  98. 98.

    Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    ADS  Google Scholar 

  99. 99.

    Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    ADS  Google Scholar 

  100. 100.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  Google Scholar 

  101. 101.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    ADS  Google Scholar 

  102. 102.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  Google Scholar 

  103. 103.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  Google Scholar 

  104. 104.

    Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    ADS  Google Scholar 

  105. 105.

    Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    ADS  Google Scholar 

  106. 106.

    Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    ADS  Google Scholar 

  107. 107.

    Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).

    Google Scholar 

  108. 108.

    Lee, J. Y. et al. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nat. Commun. 10, 5333 (2019).

    ADS  Google Scholar 

  109. 109.

    Efimkin, D. K. & MacDonald, A. H. Helical network model for twisted bilayer graphene. Phys. Rev. B 98, 035404 (2018).

    ADS  Google Scholar 

  110. 110.

    An, L. et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz. 5, 1309–1316 (2020).

    ADS  Google Scholar 

  111. 111.

    Wang, J. et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Preprint at https://arxiv.org/abs/2001.03812 (2020).

  112. 112.

    Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    ADS  Google Scholar 

  113. 113.

    Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Research Council (ERC-2015-AdG-694097) and Grupos Consolidados (IT1249-19). M.C., A.J.M., A.G. and A.R. are supported by the Flatiron Institute, a division of the Simons Foundation. We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy - Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 - 390534769, within the Priority Program SPP 2244 ‘2DMP’ and Advanced Imaging of Matter (AIM) EXC 2056 - 390715994 and funding by the Deutsche Forschungsgemeinschaft (DFG) through RTG 1995 and RTG 2247. Support by the Max Planck Institute - New York City Center for Non-Equilibrium Quantum Phenomena is acknowledged. Work at Columbia is supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. D.N.B. is a Vannevar Bush Faculty Fellow ONR-VB: N00014-19-1-2630. A.N.P. acknowledges support from the Air Force Office of Scientific Research via grant FA9550-16-1-0601.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dante M. Kennes or Abhay N. Pasupathy or Angel Rubio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kennes, D.M., Claassen, M., Xian, L. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021). https://doi.org/10.1038/s41567-020-01154-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing