Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measurement-induced topological entanglement transitions in symmetric random quantum circuits

Abstract

Random quantum circuits, in which an array of qubits is subjected to a series of randomly chosen unitary operations, have provided key insights into the dynamics of many-body quantum entanglement. Recent work has shown that interleaving the unitary operations with single-qubit measurements can drive a transition between high- and low-entanglement phases. Here we study a class of symmetric random quantum circuits with two competing types of measurement in addition to unitary dynamics. We find a rich phase diagram involving robust symmetry-protected topological, trivial and volume law entangled phases, where the transitions are hidden to expectation values of any operator and are only apparent by averaging the entanglement entropy over quantum trajectories. In the absence of unitary dynamics, we find a purely measurement-induced critical point, which maps exactly to two copies of a classical two-dimensional percolation problem. Numerical simulations indicate that this transition is a tricritical point that splits into two critical lines in the presence of arbitrarily sparse unitary dynamics with an intervening volume law entangled phase. Our results show that measurements alone are sufficient to induce criticality and logarithmic entanglement scaling, and arbitrarily sparse unitary dynamics can be sufficient to stabilize volume law entangled phases in the presence of rapid, yet competing, measurements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the circuit and its corresponding phase diagram.
Fig. 2: Chain cuts used to define the generalized topological entanglement entropy.
Fig. 3: The numerical results pertaining to the tricritical point at pu = 0.
Fig. 4: The phase transitions across the pu = 0.3 line.

Data availability

The data plotted in the figures of this Article that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.4031884.

Code availability

The source codes used to run the simulations of the symmetric random quantum circuit studied in this Article are available via Zenodo at https://doi.org/10.5281/zenodo.4031884.

References

  1. 1.

    Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).

    Google Scholar 

  2. 2.

    Li, Y., Chen, X. & Fisher, M. P. A. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    Chan, A., Nandkishore, R. M., Pretko, M. & Smith, G. Unitary-projective entanglement dynamics. Phys. Rev. B 99, 224307 (2019).

    ADS  Article  Google Scholar 

  4. 4.

    Li, Y., Chen, X. & Fisher, M. P. A. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B 100, 134306 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Gullans, M. J. & Huse, D. A. Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X 10, 041020 (2020).

    Google Scholar 

  6. 6.

    Gullans, M. J. & Huse, D. A. Scalable probes of measurement-induced criticality. Phys. Rev. Lett. 125, 070606 (2020).

    ADS  Article  Google Scholar 

  7. 7.

    Vasseur, R., Potter, A. C., You, Y.-Z. & Ludwig, A. W. W. Entanglement transitions from holographic random tensor networks. Phys. Rev. B 100, 134203 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Choi, S., Bao, Y., Qi, X.-L. & Altman, E. Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett. 125, 030505 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Szyniszewski, M., Romito, A. & Schomerus, H. Entanglement transition from variable-strength weak measurements. Phys. Rev. B 100, 064204 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Tang, Q. & Zhu, W. Measurement-induced phase transition: a case study in the nonintegrable model by density-matrix renormalization group calculations. Phys. Rev. Res. 2, 013022 (2020).

    Article  Google Scholar 

  11. 11.

    Jian, C.-M., You, Y.-Z., Vasseur, R. & Ludwig, A. W. W. Measurement-induced criticality in random quantum circuits. Phys. Rev. B 101, 104302 (2020).

    ADS  Article  Google Scholar 

  12. 12.

    Cao, X., Tilloy, A. & De Luca, A. Entanglement in a fermion chain under continuous monitoring. SciPost Phys. 7, 24 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Lopez-Piqueres, J., Ware, B. & Vasseur, R. Mean-field entanglement transitions in random tree tensor networks. Phys. Rev. B 102, 064202 (2020).

    ADS  Article  Google Scholar 

  14. 14.

    Bao, Y., Choi, S. & Altman, E. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B 101, 104301 (2020).

    ADS  Article  Google Scholar 

  15. 15.

    Piroli, L., Sünderhauf, C. & Qi, X.-L. A random unitary circuit model for black hole evaporation. J. High Energy Phys. 2020, 63 (2020).

    MathSciNet  Article  Google Scholar 

  16. 16.

    Zabalo, A. et al. Critical properties of the measurement-induced transition in random quantum circuits. Phys. Rev. B 101, 060301 (2020).

    ADS  Article  Google Scholar 

  17. 17.

    Rossini, D. & Vicari, E. Measurement-induced dynamics of many-body systems at quantum criticality. Phys. Rev. B 102, 035119 (2020).

    ADS  Article  Google Scholar 

  18. 18.

    Fan, R., Vijay, S., Vishwanath, A. & You, Y.-Z. Self-organized error correction in random unitary circuits with measurement. Preprint at https://arxiv.org/abs/2002.12385 (2020).

  19. 19.

    Nahum, A. & Skinner, B. Entanglement and dynamics of diffusion-annihilation processes with Majorana defects. Phys. Rev. Res. 2, 023288 (2020).

    Article  Google Scholar 

  20. 20.

    Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    ADS  Article  Google Scholar 

  23. 23.

    Zeng, B., Chen, X., Zhou, D.-L. & Wen, X.-G. Quantum Information Meets Quantum Matter (Springer, 2019); https://doi.org/10.1007/978-1-4939-9084-9

  24. 24.

    Son, W. et al. Quantum phase transition between cluster and antiferromagnetic states. Europhys. Lett. 95, 50001 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Santos, L. H. Rokhsar-Kivelson models of bosonic symmetry-protected topological states. Phys. Rev. B 91, 155150 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Tsui, L., Huang, Y.-T., Jiang, H.-C. & Lee, D.-H. The phase transitions between Zn × Zn bosonic topological phases in 1 + 1D, and a constraint on the central charge for the critical points between bosonic symmetry protected topological phases. Nucl. Phys. B 919, 470–503 (2017).

  27. 27.

    Zeng, B. & Wen, X.-G. Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity. Phys. Rev. B 91, 125121 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Zeng, B. & Zhou, D.-L. Topological and error-correcting properties for symmetry-protected topological order. Europhys. Lett. 113, 56001 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Fromholz, P., Magnifico, G., Vitale, V., Mendes-Santos, T. & Dalmonte, M. Entanglement topological invariants for one-dimensional topological superconductors. Phys. Rev. B 101, 085136 (2020).

    ADS  Article  Google Scholar 

  30. 30.

    Calabrese, P. & Cardy, J. Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009).

    MathSciNet  Article  Google Scholar 

  31. 31.

    Li, Y., Chen, X., Ludwig, A. W. W. & Fisher, M. P. A. Conformal invariance and quantum non-locality in hybrid quantum circuits. Preprint at https://arxiv.org/abs/2003.12721 (2020).

  32. 32.

    Gottesman, D. The Heisenberg representation of quantum computers. In Proc. 22nd International Colloquium on Group Theoretical Methods in Physics (eds Corney, S. P. et al.) 32–43 (International, 1998); https://arxiv.org/abs/quant-ph/9807006

  33. 33.

    Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).

  34. 34.

    Nahum, A., Ruhman, J., Vijay, S. & Haah, J. Quantum entanglement growth under random unitary dynamics. Phys. Rev. X 7, 031016 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank M. Hafezi, H. Dehghani and A. Nahum for helpful comments, and M. Gullans and D. Huse for suggesting the modified ancilla order parameter and for discussions regarding its saturation value in the topological phase. We acknowledge the University of Maryland supercomputing resources (http://hpcc.umd.edu) made available for conducting the research reported in this paper. A.L. and M.B. are supported by NSF CAREER (grant number DMR- 1753240), the Alfred P. Sloan Research Fellowship and JQI-PFC-UMD. Y.A. is supported by National Science Foundation grant number NSF DMR1555135 and JQI-NSF-PFC.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Ali Lavasani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Xiao Chen, Masaki Oshikawa and Brayden Ware for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11 and Figs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavasani, A., Alavirad, Y. & Barkeshli, M. Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nat. Phys. 17, 342–347 (2021). https://doi.org/10.1038/s41567-020-01112-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing