Mathematical languages shape our understanding of time in physics

Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would offer a perspective that is closer to our experience of physical reality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Debating mathematicians.

Left: INTERFOTO / Alamy Stock Photo; right: reprinted with permission from ref. 18, Springer

Change history

  • 16 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Weyl, H. The Continuum (Dover, 1994).

  2. 2.

    Gödel, K. Collected Works Vol. IV (eds Feferman, S. et al.) p. 269 (Oxford Univ. Press, 1995).

  3. 3.

    Dolev, Y. Eur. J. Philos. Sci. 8, 455–469 (2018).

  4. 4.

    Darbour, J. The End of Time (Oxford Univ. Press, 2001).

  5. 5.

    Gisin, N. Erkenntnis https://doi.org/10.1007/s10670-019-00165-8 (2019).

  6. 6.

    Posy, C. J. J. Philos. Logic 5, 91–132 (1976).

  7. 7.

    Posy, C. J. Mathematical Intuitionism (Cambridge Univ. Press, in the press).

  8. 8.

    Hilbert, D. in Philosophy of Mathematics (eds Benacerraf, P. & Putnam, H.) 183–201 (Cambridge Univ. Press, 1984).

  9. 9.

    Ellis, G. F. R., Meissner, K. A. & Nicolai, H. Nat. Phys. 14, 770–772 (2018).

  10. 10.

    Born, M. Physics in My Generation (Springer, 1969).

  11. 11.

    Dowek, G. in Computer Science – Theory and Applications (eds Bulatov, A. A. & Shur, A. M.) 347–353 (Springer, 2013).

  12. 12.

    Chaitin, G. in Meta Math! Ch. 5 (Vintage, 2008).

  13. 13.

    Chatin, G. J. Preprint at https://arxiv.org/abs/math/0411418 (2004).

  14. 14.

    Borel, E. in From Brouwer to Hilbert (ed. Mancosu, P.) 296–300 (Oxford Univ. Press, 1998).

  15. 15.

    Iemhoff, R. Intuitionism in the philosophy of mathematics. Stanford Encyclopedia of Philosophy (Summer 2019 Edition) https://go.nature.com/2E99Hqe (2019).

  16. 16.

    Gisin, N. Quantum Stud.: Math. Found. https://doi.org/10.1007/s40509-019-00211-8 (2019).

  17. 17.

    Palmer, T. N. Nat. Rev. Phys. 1, 463–471 (2019).

  18. 18.

    van Dalen, D. L.E.J. Brouwer – Topologist, Intuitionalist, Philosopher (Springer, 2013).

  19. 19.

    Brouwer, L. E. J. in Proc. 10th International Congress of Philosophy, vol. III (North-Holland, 1949).

Download references

Author information

Correspondence to Nicolas Gisin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gisin, N. Mathematical languages shape our understanding of time in physics. Nat. Phys. (2020). https://doi.org/10.1038/s41567-019-0748-5

Download citation