Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distributed quantum sensing in a continuous-variable entangled network

Abstract

Networking is integral to quantum communications1 and has significant potential for upscaling quantum computer technologies2. Recently, it was realized that the sensing performances of multiple spatially distributed parameters may also be enhanced through the use of an entangled quantum network3,4,5,6,7,8,9,10. Here, we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous-variable state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of areas ranging from molecular tracking to quantum networks of atomic clocks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Distributed phase sensing scheme.
Fig. 2: Experimental scheme.
Fig. 3: Phase sensitivity results.

Data availability

The data represented in Figs. 2 and 3 and Supplementary Fig. 6b are available as Source Data or Supplementary Data. Raw oscilloscope data and data analysis scripts are available at https://doi.org/10.11583/DTU.9988805. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, 9288 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

    ADS  Article  Google Scholar 

  3. 3.

    Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  4. 4.

    Eldredge, Z., Foss-Feig, M., Gross, J. A., Rolston, S. L. & Gorshkov, A. V. Optimal and secure measurement protocols for quantum sensor networks. Phys. Rev. A 97, 042337 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Proctor, T. J., Knott, P. A. & Dunningham, J. A. Multiparameter estimation in networked quantum sensors. Phys. Rev. Lett. 120, 080501 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Ge, W., Jacobs, K., Eldredge, Z., Gorshkov, A. V. & Foss-Feig, M. Distributed quantum metrology with linear networks and separable inputs. Phys. Rev. Lett. 121, 43604 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Zhuang, Q., Zhang, Z. & Shapiro, J. H. Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A 97, 032329 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Humphreys, P. C., Barbieri, M., Datta, A. & Walmsley, I. A. Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Gagatsos, C. N., Branford, D. & Datta, A. Gaussian systems for quantum-enhanced multiple phase estimation. Phys. Rev. A 94, 042342 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Polino, E. et al. Experimental multiphase estimation on a chip. Optica 6, 288–295 (2019).

    ADS  Article  Google Scholar 

  11. 11.

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Escher, B. M., De Matos Filho, R. L. & Davidovich, L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011).

    Article  Google Scholar 

  13. 13.

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    ADS  Article  Google Scholar 

  15. 15.

    Yonezawa, H. et al. Quantum-enhanced optical-phase tracking. Science 337, 1514–1517 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Berni, A. A. et al. Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photon. 9, 577–581 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Slussarenko, S. et al. Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photon. 11, 700–703 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose–Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).

  20. 20.

    Wolfgramm, F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Li, B.-B. et al. Quantum enhanced optomechanical magnetometry. Optica 5, 850–856 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin noon states. Science 324, 1166–1168 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Taylor, M. A. et al. Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Qi, H., Brádler, K., Weedbrook, C. & Guha, S. Ultimate limit of quantum beam tracking. Preprint at https://arxiv.org/abs/1808.01302 (2018).

  25. 25.

    Knott, P. A. et al. Local versus global strategies in multiparameter estimation. Phys. Rev. A 94, 062312 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Baumgratz, T. & Datta, A. Quantum enhanced estimation of a multidimensional field. Phys. Rev. Lett. 116, 030801 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Pezzè, L. et al. Optimal measurements for simultaneous quantum estimation of multiple phases. Phys. Rev. Lett. 119, 130504 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Knysh, S., Smelyanskiy, V. N. & Durkin, G. A. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83, 021804 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Polzik, E. S. & Ye, J. Entanglement and spin squeezing in a network of distant optical lattice clocks. Phys. Rev. A 93, 021404 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Neuhaus, L. et al. PyRPL (Python Red Pitaya Lockbox)—an open-source software package for FPGA-controlled quantum optics experiments. In Proc. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference 8087380, (IEEE, 2017).

  32. 32.

    Pinel, O., Jian, P., Treps, N., Fabre, C. & Braun, D. Quantum parameter estimation using general single-mode Gaussian states. Phys. Rev. A 88, 040102 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Šafránek, D. Estimation of Gaussian quantum states. J. Phys. A 52, 035304 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Nichols, R., Liuzzo-Scorpo, P., Knott, P. A. & Adesso, G. Multiparameter Gaussian quantum metrology. Phys. Rev. A 98, 012114 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Matsubara, T., Facchi, P., Giovannetti, V. & Yuasa, K. Optimal Gaussian metrology for generic multimode interferometric circuit. N. J. Phys. 21, 033014 (2019).

    Article  Google Scholar 

  36. 36.

    Oh, C. et al. Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology. npj Quantum Inf. 5, 10 (2019).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

M.C. and J.B. acknowledge support from Villum Fonden via the QMATH Centre of Excellence (grant no. 10059), the European Research Council (ERC grant agreement no. 337603) and from the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Programme (QuantAlgo project) via the Innovation Fund Denmark. X.G., C.R.B., S.I., M.V.L., T.G., J.S.N.-N. and U.L.A. acknowledge support from the Center for Macroscopic Quantum States (bigQ DNRF142). X.G., S.I. and J.S.N.-N. acknowledge support from Villum Fonden via the Young Investigator Programme (grant no. 10119).

Author information

Affiliations

Authors

Contributions

J.B., U.L.A., J.S.N.-N., T.G., X.G. and C.R.B. conceived the experiment. X.G., C.R.B. and M.V.L. performed the experiment and analysed the data. J.B., X.G., S.I., M.C. and J.S.N.-N. worked on the theoretical analysis. X.G. wrote the paper with contributions from J.B., C.R.B., S.I., J.S.N.-N. and U.L.A. J.S.N.-N. and U.L.A. supervised the project.

Corresponding authors

Correspondence to Xueshi Guo or Jonas S. Neergaard-Nielsen or Ulrik L. Andersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental Setup.

See Supplementary Sec. II for details. (a) Single mode displaced squeezed state generation at the 3 MHz side band; (b) A proof-of-principle experimental setup for distributed phase sensing with entangled probes. The local oscillator (LO) is used as external phase reference, and the phase shift is introduced by wave plates; (c) The balanced homodyne detection setup corresponding to HD1 to HD4 in (b).

Extended Data Fig. 2 Optimal sensitivities and quantum Cramér–Rao bounds (QCRB) for different scenarios.

All calculated with a total efficiency of η = 0.735 as in our experiment. The optimal sensitivity of our separable scheme \(\sigma _s^{opt}\) and entangled scheme \(\sigma _e^{opt}\) are plotted in solid blue and red, respectively. These are derived in the Supplementary Material Section I. The remaining four curves show the QCRBs derived in the Methods section: The optimal QCRB for ϕavg sensing with coherent probes (\(\sigma _{coh}^{CR}\), dashed black), the separable scheme with squeezed probes (\(\sigma _s^{CR}\), dashed blue), and the entangled scheme (\(\sigma _e^{CR}\), dashed red), as well as the QCRB for single parameter phase sensing with a squeezed probe (\(\sigma _{sm}^{CR}\), solid green).

Supplementary information

Supplementary Information

Supplementary sections I–IV, Figs. 1–10 and a table.

Supplementary Data 1

The PSDs plotted in Supplementary Fig. 6b.

Source data

Source Data Fig. 2

The PSD plotted in Fig. 2.

Source Data Fig. 3

The experimental result plotted in Fig. 3, including the error bars, which represent standard deviation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Breum, C.R., Borregaard, J. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020). https://doi.org/10.1038/s41567-019-0743-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing