Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooling and self-oscillation in a nanotube electromechanical resonator


Nanomechanical resonators are used with great success to couple mechanical motion to other degrees of freedom, such as photons, spins and electrons1,2. The motion of a mechanical eigenmode can be efficiently cooled into the quantum regime using photons2,3,4, but not other degrees of freedom. Here, we demonstrate a simple yet powerful method for cooling, amplification and self-oscillation using electrons. This is achieved by applying a constant (d.c.) current of electrons through a suspended nanotube in a dilution refrigerator. We demonstrate cooling to 4.6 ± 2.0 quanta of vibrations. We also observe self-oscillation, which can lead to prominent instabilities in the electron transport through the nanotube. We attribute the origin of the observed cooling and self-oscillation to an electrothermal effect. This work shows that electrons may become a useful resource for cooling the mechanical vibrations of nanoscale systems into the quantum regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of the nanotube electromechanical resonator.
Fig. 2: Conductance instabilities.
Fig. 3: Self-oscillation at Vg = −616 mV.
Fig. 4: Cooling at Vg = −943 mV.

Data availability

The data represented in Figs. 1b, 2a, 3 and 4 are available as Supplementary Data 14. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.


  1. 1.

    Treutlein, P., Genes, C., Hammerer, K., Poggio, M. & Rabl, P. Hybrid Mechanical Systems (Springer, 2014).

  2. 2.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Clark, J. B., Lecocq, F., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Sideband cooling beyond the quantum backaction limit with squeezed light. Nature 541, 191–195 (2017).

    ADS  Google Scholar 

  4. 4.

    Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    ADS  Google Scholar 

  5. 5.

    Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    ADS  Google Scholar 

  6. 6.

    Woodside, M. T. & McEuen, P. L. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296, 1098–1101 (2002).

    ADS  Google Scholar 

  7. 7.

    Lassagne, B., Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    ADS  Google Scholar 

  8. 8.

    Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    ADS  Google Scholar 

  9. 9.

    Benyamini, A., Hamo, A., Kusminskiy, S. V., von Oppen, F. & Ilani, S. Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 10, 151–156 (2014).

    Google Scholar 

  10. 10.

    Ares, N. et al. Resonant optomechanics with a vibrating carbon nanotube and a radio-frequency cavity. Phys. Rev. Lett. 117, 170801 (2016).

    ADS  Google Scholar 

  11. 11.

    Okazaki, Y., Mahboob, I., Onomitsu, K., Sasaki, S. & Yamaguchi, H. Gate-controlled electromechanical backaction induced by a quantum dot. Nat. Commun. 7, 11132 (2016).

    ADS  Google Scholar 

  12. 12.

    Götz, K. J. G. et al. Nanomechanical characterization of the Kondo charge dynamics in a carbon nanotube. Phys. Rev. Lett. 120, 246802 (2018).

    ADS  Google Scholar 

  13. 13.

    Singh, V. et al. Coupling between quantum Hall state and electromechanics in suspended graphene resonator. Appl. Phys. Lett. 100, 233103 (2012).

    ADS  Google Scholar 

  14. 14.

    Chen, C. et al. Modulation of mechanical resonance by chemical potential oscillation in graphene. Nat. Phys. 12, 240–244 (2016).

    Google Scholar 

  15. 15.

    Clerk, A. A. & Bennett, S. Quantum nanoelectromechanics with electrons, quasi-particles and cooper pairs: effective bath descriptions and strong feedback effects. New J. Phys. 7, 238 (2005).

    ADS  Google Scholar 

  16. 16.

    Armour, A. D., Blencowe, M. P. & Zhang, Y. Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor. Phys. Rev. B 69, 125313 (2004).

    ADS  Google Scholar 

  17. 17.

    Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    ADS  Google Scholar 

  18. 18.

    Zippilli, S., Morigi, G. & Bachtold, A. Cooling carbon nanotubes to the phononic ground state with a constant electron current. Phys. Rev. Lett. 102, 096804 (2009).

    ADS  Google Scholar 

  19. 19.

    Santandrea, F., Gorelik, L. Y., Shekhter, R. I. & Jonson, M. Cooling of nanomechanical resonators by thermally activated single-electron transport. Phys. Rev. Lett. 106, 186803 (2011).

    ADS  Google Scholar 

  20. 20.

    Stadler, P., Belzig, W. & Rastelli, G. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. Phys. Rev. Lett. 113, 047201 (2014).

    ADS  Google Scholar 

  21. 21.

    Arrachea, L., Bode, N. & von Oppen, F. Vibrational cooling and thermoelectric response of nanoelectromechanical systems. Phys. Rev. B 90, 125450 (2014).

    ADS  Google Scholar 

  22. 22.

    Stadler, P., Belzig, W. & Rastelli, G. Ground-state cooling of a mechanical oscillator by interference in Andreev reflection. Phys. Rev. Lett. 117, 197202 (2016).

    ADS  Google Scholar 

  23. 23.

    Laird, E. A. et al. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, 703–764 (2015).

    ADS  MathSciNet  Google Scholar 

  24. 24.

    Hamo, A. et al. Electron attraction mediated by Coulomb repulsion. Nature 535, 395–400 (2016).

    ADS  Google Scholar 

  25. 25.

    Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 4, 314–318 (2008).

    Google Scholar 

  26. 26.

    Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 9, 1007–1011 (2014).

    ADS  Google Scholar 

  27. 27.

    Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    ADS  Google Scholar 

  28. 28.

    de Bonis, S. L. et al. Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators. Nano Lett. 18, 5324–5328 (2018).

    ADS  Google Scholar 

  29. 29.

    Khivrich, I., Clerk, A. A. & Ilani, S. Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube. Nat. Nanotechnol. 14, 161–167 (2019).

    ADS  Google Scholar 

  30. 30.

    Song, X., Oksanen, M., Li, J., Hakonen, P. J. & Sillanpää, M. A. Graphene optomechanics realized at microwave frequencies. Phys. Rev. Lett. 113, 027404 (2014).

    ADS  Google Scholar 

  31. 31.

    Weber, P., Güttinger, J., Noury, A., Vergara-Cruz, J. & Bachtold, A. Force sensitivity of multilayer graphene optomechanical devices. Nat. Commun. 7, 12496 (2016).

    ADS  Google Scholar 

  32. 32.

    Steeneken, P. G. et al. Piezoresistive heat engine and refrigerator. Nat. Phys. 7, 354–359 (2011).

    Google Scholar 

  33. 33.

    Barton, R. A. et al. Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 12, 4681–4686 (2012).

    ADS  Google Scholar 

  34. 34.

    Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054–1057 (2013).

    ADS  Google Scholar 

  35. 35.

    Jullien, T. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014).

    ADS  Google Scholar 

  36. 36.

    Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    ADS  Google Scholar 

  37. 37.

    Pistolesi, F. & Labarthe, S. Current blockade in classical single-electron nanomechanical resonator. Phy. Rev. B 76, 165317 (2007).

    ADS  Google Scholar 

  38. 38.

    Zhu, J., Brink, M. & McEuen, P. L. Frequency shift imaging of quantum dots with single-electron resolution. Appl. Phys. Lett. 87, 242102 (2005).

    ADS  Google Scholar 

  39. 39.

    Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

    ADS  Google Scholar 

  40. 40.

    LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    ADS  Google Scholar 

  41. 41.

    Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P. & Clerk, A. A. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010).

    ADS  Google Scholar 

  42. 42.

    Pirkkalainen, J.-M. et al. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6, 6981 (2015).

    ADS  Google Scholar 

  43. 43.

    Deng, G.-W. et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 16, 5456–5462 (2016).

    ADS  Google Scholar 

  44. 44.

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    ADS  Google Scholar 

Download references


We thank M. Dykman, F. Pistolesi and D. Chang for discussions. This work is supported by ERC advanced grant number 692876, the Cellex Foundation, the CERCA Programme, AGAUR (grant number 2017SGR1664), Severo Ochoa (grant number SEV-2015-0522), MICINN grant number RTI2018-097953-B-I00 and the Fondo Europeo de Desarrollo Regional. We thank B. Thibeault at UCSB for fabrication help.

Author information




W.Y. fabricated the devices with the support of C.U. and M.J.E. in the growth. C.U. and W.Y. carried out the measurements. C.U., W.Y., S.L.B., C.S., Q.D. and Y.J developed the detection circuit. C.U., W.Y. and A.B. analysed the data and wrote the manuscript. A.B. supervised the work.

Corresponding authors

Correspondence to W. Yang or A. Bachtold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, methods and discussion, and references.

Supplementary Data 1

Source data for Fig. 1b.

Supplementary Data 2

Source data for Fig. 2a.

Supplementary Data 3

Source data for Fig. 3.

Supplementary Data 4

Source data for Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urgell, C., Yang, W., De Bonis, S.L. et al. Cooling and self-oscillation in a nanotube electromechanical resonator. Nat. Phys. 16, 32–37 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing