Anomalous decay of coherence in a dissipative many-body system


Decoherence plays a major role in our current understanding of the conceptual foundations of quantum physics1. In many instances, decoherence is also a threat that must be countered (for instance, in quantum information processing or quantum technologies). While decoherence has been extensively studied for simple, well-isolated systems such as single atoms or ions2, much less is known for many-body systems where interparticle correlations and interactions can drastically alter the dissipative dynamics3,4,5,6. Here, we study experimentally the decoherence of a gas of strongly interacting bosons in an optical lattice exposed to near-resonant light and spontaneous emission. We observe an anomalous subdiffusion in momentum space, associated with a universal slowing down 1/t1/2 of the loss of spatial coherence. This algebraic decay reflects the emergence of slowly relaxing many-body states5, akin to the subradiant states of many excited emitters4. These results, supported by theoretical predictions, provide an important benchmark in the understanding of open many-body systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Observation of anomalous diffusion in momentum space.
Fig. 2: Decay of peak momentum amplitude and atom losses.
Fig. 3: Decay of nearest-neighbour coherence.
Fig. 4: Decay exponent α of the nearest-neighbour coherence Cnn.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information and Source Data.


  1. 1.

    Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, 2006).

  3. 3.

    Cai, Z. & Barthel, T. Algebraic versus exponential decoherence in dissipative many-particle systems. Phys. Rev. Lett. 111, 150403 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Henriet, L., Douglas, J. S., Chang, D. E. & Albrecht, A. Critical open-system dynamics in a one-dimensional optical-lattice clock. Phys. Rev. A 99, 023802 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Poletti, D., Barmettler, P., Georges, A. & Kollath, C. Emergence of glasslike dynamics for dissipative and strongly interacting bosons. Phys. Rev. Lett. 111, 195301 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Pichler, H., Daley, A. J. & Zoller, P. Nonequilibrium dynamics of bosonic atoms in optical lattices: decoherence of many-body states due to spontaneous emission. Phys. Rev. A 82, 063605 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Daley, A. J. Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331 (2008).

    ADS  Article  Google Scholar 

  9. 9.

    Barontini, G. et al. Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys. Rev. Lett. 110, 035302 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Zhu, B. et al. Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect. Phys. Rev. Lett. 112, 070404 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Tomita, T., Nakajima, S., Danshita, I., Takasu, Y. & Takahashi, Y. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose–Hubbard system. Sci. Adv. 3, e1701513 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Sponselee, K. et al. Dynamics of ultracold quantum gases in the dissipative Fermi–Hubbard model. Quantum Sci. Technol. 4, 014002 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Labouvie, R., Santra, B., Heun, S. & Ott, H. Bistability in a driven-dissipative superfluid. Phys. Rev. Lett. 116, 235302 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Rauer, B. et al. Cooling of a one-dimensional Bose gas. Phys. Rev. Lett. 116, 030402 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Schemmer, M. & Bouchoule, I. Cooling a Bose gas by three-body losses. Phys. Rev. Lett. 121, 200401 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Holland, M., Marksteiner, S., Marte, P. & Zoller, P. Measurement induced localization from spontaneous decay. Phys. Rev. Lett. 76, 3683–3686 (1996).

    ADS  Article  Google Scholar 

  17. 17.

    Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    ADS  Article  Google Scholar 

  18. 18.

    Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980).

    ADS  Article  Google Scholar 

  19. 19.

    Pfau, T., Spälter, S., Kurtsiefer, C., Ekstrom, C. R. & Mlynek, J. Loss of spatial coherence by a single spontaneous emission. Phys. Rev. Lett. 73, 1223–1226 (1994).

    ADS  Article  Google Scholar 

  20. 20.

    Patil, Y. S., Chakram, S. & Vengalattore, M. Measurement-induced localization of an ultracold lattice gas. Phys. Rev. Lett. 115, 140402 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Lüschen, H. P. et al. Signatures of many-body localization in a controlled open quantum system. Phys. Rev. X 7, 011034 (2017).

    Google Scholar 

  22. 22.

    Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Poletti, D., Bernier, J.-S., Georges, A. & Kollath, C. Interaction-induced impeding of decoherence and anomalous diffusion. Phys. Rev. Lett. 109, 045302 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Zwerger, W. Mott–Hubbard transition of cold atoms in an optical lattice. J. Opt. B 5, S9–S16 (2003).

    ADS  Article  Google Scholar 

  26. 26.

    Bouganne, R. et al. Clock spectroscopy of interacting bosons in deep optical lattices. New J. Phys. 19, 113006 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Weiner, J., Bagnato, V. S., Zilio, S. & Julienne, P. S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999).

    ADS  Article  Google Scholar 

  28. 28.

    Yanay, Y. & Mueller, E. J. Heating from continuous number density measurements in optical lattices. Phys. Rev. A 90, 023611 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101–144 (1998).

    ADS  Article  Google Scholar 

  30. 30.

    Sciolla, B., Poletti, D. & Kollath, C. Two-time correlations probing the dynamics of dissipative many-body quantum systems: aging and fast relaxation. Phys. Rev. Lett. 114, 170401 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Denschlag, J. H. et al. A Bose–Einstein condensate in an optical lattice. J. Phys. B 35, 3095 (2002).

    ADS  Article  Google Scholar 

  32. 32.

    Rokhsar, D. S. & Kotliar, B. G. Gutzwiller projection for bosons. Phys. Rev. B 44, 10328–10332 (1991).

    ADS  Article  Google Scholar 

  33. 33.

    Krauth, W., Caffarel, M. & Bouchaud, J.-P. Gutzwiller wave function for a model of strongly interacting bosons. Phys. Rev. B 45, 3137–3140 (1992).

    ADS  Article  Google Scholar 

  34. 34.

    Ketterle, W., Durfee, D. S. & Stamper-kurn, D. M. Making, probing and understanding Bose–Einstein condensates. In Proc. International School of Physics Enrico Fermi (eds Inguscio, M. et al.) Vol. 140, 67–176 (1999).

  35. 35.

    Ockeloen-Korppi, C., Tauschinsky, A., Spreeuw, R. & Whitlock, S. Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Pedri, P. et al. Expansion of a coherent array of Bose–Einstein condensates. Phys. Rev. Lett. 87, 220401 (2001).

    ADS  Article  Google Scholar 

  37. 37.

    Gerbier, F. et al. Expansion of a quantum gas released from an optical lattice. Phys. Rev. Lett. 101, 155303 (2008).

    ADS  Article  Google Scholar 

Download references


We acknowledge fruitful discussions with A. Georges, C. Kollath and J.-S. Bernier. We thank M. Brune, J. Dalibard, R. Lopes, S. Nascimbène and D. Poletti for careful reading of the manuscript. Laboratoire Kastler Brossel is a member of the DIM SIRTEQ of Région Ile-de-France.

Author information




R.B., M.B.A. and A.G. performed the measurements under the supervision of J.B. and F.G. R.B. analysed the data. R.B. and F.G. performed analytical and numerical calculations. All authors participated in the interpretation and discussion of the experimental results and in the writing of the manuscript.

Corresponding author

Correspondence to Fabrice Gerbier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–10 and references.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouganne, R., Bosch Aguilera, M., Ghermaoui, A. et al. Anomalous decay of coherence in a dissipative many-body system. Nat. Phys. 16, 21–25 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing