Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced thermal Hall effect in the square-lattice Néel state

A Publisher Correction to this article was published on 26 January 2021

This article has been updated

Abstract

Common wisdom about conventional antiferromagnets is that their low-energy physics is governed by spin–wave excitations. However, recent experiments on several cuprate compounds have challenged this concept. An enhanced thermal Hall response in the pseudogap phase was identified, which persists even in the insulating parent compounds without doping. Here, to explain these surprising observations, we study the quantum phase transition of a square-lattice antiferromagnet from a confining Néel state to a state with coexisting Néel and semion topological order. The transition is driven by an applied magnetic field and involves no change in the symmetry of the state. The critical point is described by a strongly coupled conformal field theory with an emergent global SO(3) symmetry. The field theory has four different formulations in terms of SU(2) or U(1) gauge theories, which are all related by dualities; we relate all four theories to the lattice degrees of freedom. We show how proximity of the confining Néel state to the critical point can explain the enhanced thermal Hall effect seen in experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of proposed phase diagram of H1 + HB at BZ = 0.
Fig. 2: Ansatz and spectrum of spinon Hamiltonian.
Fig. 3: Phase diagram and thermal Hall conductivity of spinon mean-field theory.
Fig. 4: Four dual-field theories for the antiferromagnet flow to the same fixed point.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

Change history

References

  1. Kasahara, Y. et al. Unusual thermal Hall effect in a Kitaev spin liquid candidate α-RuCl3. Phys. Rev. Lett. 120, 217205 (2018).

    ADS  Google Scholar 

  2. Grissonnanche, G. et al. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors. Nature 571, 376–380 (2019).

    ADS  Google Scholar 

  3. Samajdar, R., Chatterjee, S., Sachdev, S. & Scheurer, M. S. Thermal Hall effect in square-lattice spin liquids: a Schwinger boson mean-field study. Phys. Rev. B 99, 165126 (2019).

    ADS  Google Scholar 

  4. Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).

    ADS  Google Scholar 

  5. Benini, F., Hsin, P.-S. & Seiberg, N. Comments on global symmetries, anomalies, and duality in (2 + 1)d. J. High. Energy Phys. 04, 135 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  6. Aharony, O. Baryons, monopoles and dualities in Chern–Simons-matter theories. J. High. Energy Phys. 02, 093 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  7. Hsin, P.-S. & Seiberg, N. Level/rank duality and Chern–Simons-matter theories. J. High. Energy Phys. 09, 095 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  8. Aharony, O., Benini, F., Hsin, P.-S. & Seiberg, N. Chern–Simons-matter dualities with SO and USp gauge groups. J. High. Energy Phys. 02, 072 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  9. Sen, D. & Chitra, R. Large-U limit of a Hubbard model in a magnetic field: chiral spin interactions and paramagnetism. Phys. Rev. B 51, 1922–1925 (1995).

    ADS  Google Scholar 

  10. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bauer, B. et al. Chiral spin liquid and emergent anyons in a kagome lattice Mott insulator. Nat. Commun. 5, 5137 (2014).

    ADS  Google Scholar 

  12. He, Y.-C. & Chen, Y. Distinct spin liquids and their transitions in spin-1/2 XXZ kagome antiferromagnets. Phys. Rev. Lett. 114, 037201 (2015).

    ADS  Google Scholar 

  13. Haghshenas, R., Gong, S.-S. & Sheng, D. Single-layer tensor network study of the Heisenberg model with chiral interactions on a kagome lattice. Phys. Rev. B 99, 174423 (2019).

    ADS  Google Scholar 

  14. Hu, W.-J., Gong, S.-S. & Sheng, D. N. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice. Phys. Rev. B 94, 075131 (2016).

    ADS  Google Scholar 

  15. Wietek, A. & Läuchli, A. M. Chiral spin liquid and quantum criticality in extended S =1/2 Heisenberg models on the triangular lattice. Phys. Rev. B 95, 035141 (2017).

    ADS  Google Scholar 

  16. Saadatmand, S. N. & McCulloch, I. P. Detection and characterization of symmetry-broken long-range orders in the spin-1/2 triangular Heisenberg model. Phys. Rev. B 96, 075117 (2017).

    ADS  Google Scholar 

  17. Gong, S.-S., Zhu, W., Zhu, J. X., Sheng, D. N. & Yang, K. Global phase diagram and quantum spin liquids in a spin-1/2 triangular antiferromagnet. Phys. Rev. B 96, 075116 (2017).

    ADS  Google Scholar 

  18. Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Observation of a chiral spin liquid phase of the Hubbard model on the triangular lattice: a density matrix renormalization group study. Preprint at https://arxiv.org/abs/1808.00463 (2018).

  19. Nielsen, A. E. B., Sierra, G. & Cirac, J. I. Local models of fractional quantum Hall states in lattices and physical implementation. Nat. Commun. 4, 2864 (2013).

    ADS  Google Scholar 

  20. Wang, C., Nahum, A., Metlitski, M. A., Xu, C. & Senthil, T. Deconfined quantum critical points: symmetries and dualities. Phys. Rev. X 7, 031051 (2017).

    Google Scholar 

  21. Cappelli, A., Huerta, M. & Zemba, G. R. Thermal transport in chiral conformal theories and hierarchical quantum Hall states. Nucl. Phys. B 636, 568–582 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  22. Affleck, I. & Marston, J. B. Large-n limit of the Heisenberg–Hubbard model: implications for high-T c superconductors. Phys. Rev. B 37, 3774–3777 (1988).

    ADS  Google Scholar 

  23. Affleck, I., Zou, Z., Hsu, T. & Anderson, P. W. SU(2) gauge symmetry of the large-U limit of the Hubbard model. Phys. Rev. B 38, 745–747 (1988).

    ADS  Google Scholar 

  24. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).

    ADS  Google Scholar 

  25. Wen, X.-G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).

    ADS  Google Scholar 

  26. Scheurer, M. S. & Sachdev, S. Orbital currents in insulating and doped antiferromagnets. Phys. Rev. B 98, 235126 (2018).

    ADS  Google Scholar 

  27. Qin, T., Niu, Q. & Shi, J. Energy magnetization and the thermal Hall effect. Phys. Rev. Lett. 107, 236601 (2011).

    ADS  Google Scholar 

  28. Sachdev, S. Nonzero-temperature transport near fractional quantum Hall critical points. Phys. Rev. B 57, 7157–7173 (1998).

    ADS  Google Scholar 

  29. Witten, E. Fermion path integrals and topological phases. Rev. Mod. Phys. 88, 035001 (2016).

    ADS  Google Scholar 

  30. Seiberg, N., Senthil, T., Wang, C. & Witten, E. A duality web in 2 + 1 dimensions and condensed matter physics. Ann. Phys. 374, 395–433 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Seiberg, N. & Witten, E. Gapped boundary phases of topological insulators via weak coupling. Prog. Theor. Exp. Phys. 2016, 12C101 (2016).

    MATH  Google Scholar 

  32. Cordova, C., Freed, D. S., Tat Lam, H. & Seiberg, N. Anomalies in the space of coupling constants and their dynamical applications I. Preprint at https://arxiv.org/abs/1905.09315 (2019).

  33. Zhang, S.-C. The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 06, 25–58 (1992).

    ADS  MathSciNet  Google Scholar 

  34. Lee, J. Y., Wang, C., Zaletel, M. P., Vishwanath, A. & He, Y.-C. Emergent multi-flavor qed3 at the plateau transition between fractional Chern insulators: applications to graphene heterostructures. Phys. Rev. X 8, 031015 (2018).

    Google Scholar 

  35. Barkeshli, M. & McGreevy, J. A continuous transition between fractional quantum Hall and superfluid states. Phys. Rev. B 89, 235116 (2014).

    ADS  Google Scholar 

  36. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    ADS  Google Scholar 

  37. Chen, W., Fisher, M. P. A. & Wu, Y.-S. Mott transition in an anyon gas. Phys. Rev. B 48, 13749–13761 (1993).

    ADS  Google Scholar 

  38. Sachdev, S., Metlitski, M. A., Qi, Y. & Xu, C. Fluctuating spin density waves in metals. Phys. Rev. B 80, 155129 (2009).

    ADS  Google Scholar 

  39. Sachdev, S., Scammell, H. D., Scheurer, M. S. & Tarnopolsky, G. Gauge theory for the cuprates near optimal doping. Phys. Rev. B 99, 054516 (2019).

    ADS  Google Scholar 

  40. Chakravarty, S., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

    ADS  Google Scholar 

  41. Haghshenas, R. & Sheng, D. N. U(1)-symmetric infinite projected entangled-pair states study of the spin-1/2 square J 1 − J 2 Heisenberg model. Phys. Rev. B 97, 174408 (2018).

    ADS  Google Scholar 

  42. Wang, L. & Sandvik, A. W. Critical level crossings and gapless spin liquid in the square-lattice spin-1/2 J 1 − J 2 Heisenberg antiferromagnet. Phys. Rev. Lett. 121, 107202 (2018).

    ADS  Google Scholar 

  43. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    ADS  Google Scholar 

  44. Sreejith, G. J., Powell, S. & Nahum, A. Emergent SO(5) symmetry at the columnar ordering transition in the classical cubic dimer model. Phys. Rev. Lett. 122, 080601 (2019).

    ADS  Google Scholar 

  45. Tanaka, A. & Hu, X. Many-body spin Berry phases emerging from the π-flux state: competition between antiferromagnetism and the valence-bond-solid state. Phys. Rev. Lett. 95, 036402 (2005).

    ADS  Google Scholar 

  46. Senthil, T. & Fisher, M. P. A. Competing orders, nonlinear sigma models, and topological terms in quantum magnets. Phys. Rev. B 74, 064405 (2006).

    ADS  Google Scholar 

  47. Gorbenko, V., Rychkov, S. & Zan, B. Walking, weak first-order transitions, and complex CFTs. J. High. Energy Phys. 10, 108 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  48. Ma, H. & He, Y.-C. Shadow of complex fixed point: approximate conformality of Q > 4 Potts model. Phys. Rev. B 99, 195130 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation under grant no. DMR-1664842. S.C. acknowledges support from the ERC synergy grant UQUAM. M.S.S. acknowledges support from the German National Academy of Sciences Leopoldina through grant no. LPDS 2016-12. We thank N. Seiberg for explaining many subtle aspects of the non-Abelian dualities to us. We thank G. Grissonnanche, Y.-C. He, C. Hickey, C.-M. Jian, P. A. Lee, A. Nahum, L. Taillefer and L. Zou for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research leading to the formulation and analyses of the quantum field theory and the writing of the paper. R.S. performed the numerical mean-field computations presented in Figs. 2 and 3.

Corresponding author

Correspondence to Subir Sachdev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Supplementary Fig. 1, text and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samajdar, R., Scheurer, M.S., Chatterjee, S. et al. Enhanced thermal Hall effect in the square-lattice Néel state. Nat. Phys. 15, 1290–1294 (2019). https://doi.org/10.1038/s41567-019-0669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0669-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing