Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum state tomography across the exceptional point in a single dissipative qubit

Abstract

Open physical systems can be described by effective non-Hermitian Hamiltonians that characterize the gain or loss of energy or particle numbers from the system. Experimental realization of optical1,2,3,4,5,6,7 and mechanical8,9,10,11,12,13 non-Hermitian systems has been reported, demonstrating functionalities such as lasing14,15,16, topological features7,17,18,19, optimal energy transfer20,21 and enhanced sensing22,23. Such realizations have been limited to classical (wave) systems in which only the amplitude information, not the phase, is measured. Thus, the effects of a systems’s proximity to an exceptional point—a degeneracy of such non-Hermitian Hamiltonians where the eigenvalues and corresponding eigenmodes coalesce24,25,26,27,28,29—on its quantum evolution remain unexplored. Here, we use post-selection on a three-level superconducting transmon circuit to carry out quantum state tomography of a single dissipative qubit in the vicinity of its exceptional point. We observe the spacetime reflection symmetry-breaking transition30,31 at zero detuning, decoherence enhancement at finite detuning and a quantum signature of the exceptional point in the qubit relaxation state. Our experiments show phenomena associated with non-Hermitian physics such as non-orthogonality of eigenstates in a fully quantum regime, which could provide a route to the exploration and harnessing of exceptional point degeneracies for quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental overview.
Fig. 2: \({\cal{P}}{\cal{T}}\) symmetry-breaking transition in a single dissipative qubit.
Fig. 3: Non-orthogonality of eigenstates in the vicinity of the EP.
Fig. 4: Coherence damping and steady state of a single dissipative qubit.

Data availability

The data that support the plots within this paper and other findings of this study are available from K.W.M. on reasonable request.

References

  1. 1.

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  2. 2.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article  ADS  Google Scholar 

  3. 3.

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    Article  ADS  Google Scholar 

  4. 4.

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article  ADS  Google Scholar 

  5. 5.

    Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  6. 6.

    Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity-time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article  ADS  Google Scholar 

  7. 7.

    El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  Google Scholar 

  8. 8.

    Bender, C. M., Berntson, B. K., Parker, D. & Samuel, E. Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013).

    Article  ADS  Google Scholar 

  9. 9.

    Guo, A. et al. Observation of 𝒫𝒯-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article  ADS  Google Scholar 

  10. 10.

    Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article  ADS  Google Scholar 

  11. 11.

    Li, J. et al. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10, 855 (2019).

    Article  ADS  Google Scholar 

  12. 12.

    Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2016).

    Article  ADS  Google Scholar 

  13. 13.

    Xiao, L. et al. Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).

    Article  Google Scholar 

  14. 14.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    Article  ADS  Google Scholar 

  15. 15.

    Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  16. 16.

    Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016).

    Article  ADS  Google Scholar 

  17. 17.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljaić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  18. 18.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  19. 19.

    Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    Article  ADS  Google Scholar 

  20. 20.

    Xu, H., Mason, D., Jiang, L. & Harris, J. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    Article  ADS  Google Scholar 

  21. 21.

    Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    Article  ADS  Google Scholar 

  22. 22.

    Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    Article  ADS  Google Scholar 

  23. 23.

    Chen, W., Kaya Özdemir, S., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article  ADS  Google Scholar 

  24. 24.

    Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Article  ADS  Google Scholar 

  25. 25.

    Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article  ADS  Google Scholar 

  26. 26.

    Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

    Article  ADS  Google Scholar 

  27. 27.

    Kato, T. Perturbation Theory for Linear Operators (Springer, 1995).

  28. 28.

    Heiss, W. D. The physics of exceptional points. J. Phys. A 45, 444016 (2012).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  29. 29.

    Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).

    Article  ADS  Google Scholar 

  30. 30.

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  31. 31.

    Mostafazadeh, A. Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods M 7, 1191–1306 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Dalibard, J., Castin, Y. & Mølmer, K. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580–583 (1992).

    Article  ADS  Google Scholar 

  33. 33.

    Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    Article  ADS  Google Scholar 

  34. 34.

    Partanen, M. et al. Optimized heat transfer at exceptional points in quantum circuits. Preprint at https://arxiv.org/abs/1812.02683 (2018).

  35. 35.

    Wu, Y. et al. Observation of parity-time symmetry breaking in a single-spin system. Science 364, 878–880 (2019).

    MathSciNet  Article  ADS  Google Scholar 

  36. 36.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  37. 37.

    Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article  ADS  Google Scholar 

  38. 38.

    Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    Article  ADS  Google Scholar 

  39. 39.

    Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    MathSciNet  Article  ADS  Google Scholar 

  40. 40.

    Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).

    Article  Google Scholar 

  41. 41.

    Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J. & Siddiqi, I. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys. Rev. B 83, 134501 (2011).

    Article  ADS  Google Scholar 

  42. 42.

    Jacobs, K. Quantum Measurement Theory and its Applications (Cambridge University Press, 2014).

  43. 43.

    Wiseman, H. & Milburn, G. Quantum Measurement and Control (Cambridge University Press, 2010).

  44. 44.

    Carmichael, H. J., Lane, A. S. & Walls, D. F. Resonance fluorescence from an atom in a squeezed vacuum. Phys. Rev. Lett. 58, 2539–2542 (1987).

    Article  ADS  Google Scholar 

  45. 45.

    Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    Article  ADS  Google Scholar 

  46. 46.

    Chen, C., Jin, L. & Liu, R.-B. Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New J. Phys. 21, 083002 (2019).

    Article  ADS  Google Scholar 

  47. 47.

    Zhang, M. et al. Quantum noise theory of exceptional point sensors. Preprint at https://arxiv.org/abs/1805.12001 (2018).

  48. 48.

    Cramér, H. Mathematical Methods of Statistics (Princeton University Press, 1946).

  49. 49.

    Bures, D. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. T. Am. Math. Soc. 135, 199–212 (1969).

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Jordan, A. N., Martnez-Rincón, J. & Howell, J. C. Technical advantages for weak-value amplification: when less is more. Phys. Rev. X 4, 011031 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank P. M. Harrington for preliminary contributions, D. Tan for sample fabrication and K. Mølmer and C. Bender for discussions. K.W.M. acknowledges research support from the NSF (grant nos. PHY-1607156 and PHY-1752844 (CAREER)), and Y.N.J. acknowledges NSF grant no. DMR-1054020 (CAREER). This research used facilities at the Institute of Materials Science and Engineering at Washington University.

Author information

Affiliations

Authors

Contributions

K.W.M., M.N. and Y.N.J. conceived the project. K.W.M., M.A. and M.N. performed the experiments and analysed the data. Y.N.J. provided theory support. K.W.M., M.N. and Y.N.J. wrote the manuscript.

Corresponding authors

Correspondence to Yogesh N. Joglekar or K. W. Murch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naghiloo, M., Abbasi, M., Joglekar, Y.N. et al. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15, 1232–1236 (2019). https://doi.org/10.1038/s41567-019-0652-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing