Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor


Weyl points are discrete locations in the three-dimensional momentum space where two bands cross linearly with each other. They serve as the monopoles of Berry curvature in the momentum space, and their existence requires breaking of either time-reversal or inversion symmetry1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Although various non-centrosymmetric Weyl systems have been reported15, demonstration of Weyl degeneracies due to breaking of the time-reversal symmetry remains scarce and is limited to electronic systems17,18. Here, we report the experimental observation of photonic Weyl degeneracies in a magnetized semiconductor—InSb, which behaves as a magnetized plasma19 for electromagnetic waves at the terahertz band. By varying the magnetic field strength, Weyl points and the corresponding photonic Fermi arcs have been demonstrated. Our observation establishes magnetized semiconductors as a reconfigurable20 terahertz Weyl system, which may prompt research on novel magnetic topological phenomena such as chiral Majorana-type edge states and zero modes in classic systems21,22.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Bulk states of lossless magnetized InSb.
Fig. 2: Observation of a terahertz Weyl point in a magnetized semiconductor system.
Fig. 3: Surface states under tilted-incidence excitation.
Fig. 4: Photonic Weyl points and Fermi arcs in the synthetic space.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  2. 2.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  3. 3.

    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

  4. 4.

    Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

  5. 5.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  6. 6.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  7. 7.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

  8. 8.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

  9. 9.

    Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

  10. 10.

    Lin, Q., Xiao, M., Yuan, L. & Fan, S. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731 (2016).

  11. 11.

    Chang, G. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

  12. 12.

    Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

  13. 13.

    Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

  14. 14.

    Wang, Q., Xiao, M., Liu, H., Zhu, S. & Chan, C. T. Optical interface states protected by synthetic Weyl points. Phys. Rev. X 7, 031032 (2017).

  15. 15.

    Armitage, N. P. & Ashvin Vishwanath, E. J. M. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

  16. 16.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

  17. 17.

    Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Preprint at (2015).

  18. 18.

    Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

  19. 19.

    Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).

  20. 20.

    Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

  21. 21.

    Tan, W., Chen, L., Ji, X. & Lin, H.-Q. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex. Sci. Rep. 4, 7381 (2014).

  22. 22.

    Jin, D. et al. Topological magnetoplasmon. Nat. Commun. 7, 13486 (2016).

  23. 23.

    Goi, E., Yue, Z., Cumming, B. P. & Gu, M. Observation of type I photonic Weyl points in optical frequencies. Laser Photon. Rev. 12, 1700271 (2018).

  24. 24.

    Chen, W.-J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016).

  25. 25.

    Yang, B. et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun. 8, 97 (2017).

  26. 26.

    Yang, B. et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 359, 1013–1016 (2018).

  27. 27.

    Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017).

  28. 28.

    O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016).

  29. 29.

    Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

  30. 30.

    Kharzeev, D. E., Kikuchi, Y., Meyer, R. & Tanizaki, Y. Giant photocurrent in asymmetric Weyl semimetals from the helical magnetic effect. Phys. Rev. B 98, 014305 (2018).

  31. 31.

    Yang, Z. et al. Weyl points in a magnetic tetrahedral photonic crystal. Opt. Express 25, 15772–15777 (2017).

  32. 32.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

  33. 33.

    Poo, Y., Wu, R.-x, Lin, Z., Yang, Y. & Chan, C. T. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 093903 (2011).

  34. 34.

    Morozov, A. I Introduction to Plasma Dynamics. (CRC: 2012).

  35. 35.

    Zhang, S., Xiong, Y., Bartal, G., Yin, X. & Zhang, X. Magnetized plasma for reconfigurable subdiffraction imaging. Phys. Rev. Lett. 106, 243901 (2011).

  36. 36.

    Yang, B., Lawrence, M., Gao, W., Guo, Q. & Zhang, S. One-way helical electromagnetic wave propagation supported by magnetized plasma. Sci. Rep. 6, 21461 (2016).

  37. 37.

    Gangaraj, S. A. H. & Monticone, F. Topological waveguiding near an exceptional point: defect-immune, slow-light, and loss-immune propagation. Phys. Rev. Lett. 121, 093901 (2018).

  38. 38.

    Hassani Gangaraj, S. A. et al. Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms. Phys. Rev. B 99, 245414 (2019).

  39. 39.

    Howells, S. C. & Schlie, L. A. Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz. Appl. Phys. Lett. 69, 550–552 (1996).

  40. 40.

    Wang, X., Belyanin, A. A., Crooker, S. A., Mittleman, D. M. & Kono, J. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nat. Phys. 6, 126–130 (2009).

  41. 41.

    Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

  42. 42.

    Buddhiraju, S. et al. Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics. Preprint at (2018).

  43. 43.

    Hassani Gangaraj, S. A. & Monticone, F. Do truly unidirectional surface plasmon-polaritons exist?. Preprint at (2019).

  44. 44.

    Jia, H. et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science 363, 148–151 (2019).

  45. 45.

    Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

Download references


We thank Z. Zhang and C. Zhang at Capital Normal University for experimental instrument support. This work is supported by the European Research Council Consolidator Grant (TOPOLOGICAL), Horizon 2020 Action Project grant 734578 (D-SPA) and 777714 (NOCTORNO), EPSRC grant no. EP/J018473/1 and the National Science Foundation of China (grant nos. 61875150 and 61420106006). S.Z. acknowledges support from the Royal Society and the Wolfson Foundation. M.N.-C. acknowledges support from the University of Birmingham (Birmingham Fellowship), the EPSRC (grant no. EP/S018395/1) and the Royal Society (grant no. IES/R3/183131).

Author information

D.W., B.Y. and S.Z. initiated the project and designed the experiment. D.W., Q.Y., X.C., M.W. and J.H. fabricated samples. D.W. and J.H. carried out the measurements. D.W., B.Y., J.H., W.Z. and S.Z. analysed data. D.W., B.Y., W.G., H.J., M.N.-C. and C.L. performed simulations. D.W., B.Y., W.G., M.N.-C., J.H., W.Z. and S.Z. provided the theoretical explanations. J.H., W.Z. and S.Z. supervised the project. All authors discussed the results and contributed to the final manuscript.

Correspondence to Jiaguang Han or Weili Zhang or Shuang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Francesco Monticone, Giacomo Scalari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1 and 2 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark