Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fragility of the dissipationless state in clean two-dimensional superconductors

Abstract

Dissipationless charge transport is one of the defining properties of superconductors, but the interplay between dimensionality and disorder in determining the onset of dissipation remains an open theoretical and experimental problem. Here, we present measurements of the dissipation phase diagrams of superconductors in the two-dimensional limit, layer by layer, down to a monolayer in the presence of temperature (T), magnetic field (B) and current (I) in 2H-NbSe2. Our results show that the phase diagram strongly depends on the thickness even in the two-dimensional limit. At four layers we can define a finite region in the IB phase diagram where dissipationless transport exists at T = 0. At even smaller thicknesses, this region shrinks in area until in a monolayer it approaches a single point defined by T = B = I = 0. In applied field, we show that time-dependent Ginzburg–Landau simulations that describe dissipation by vortex motion qualitatively reproduce our experimental IB phase diagram. Last, we show that by using non-local transport and time-dependent Ginzburg–Landau calculations that we can engineer charge flow and create phase boundaries between dissipative and dissipationless transport regions in a single sample, demonstrating control over non-equilibrium states of matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Equilibrium phase diagram of a 2D superconductor.
Fig. 2: Absence of dissipationless transport in a 2D superconductor.
Fig. 3: TDGL simulation reproduces metallic-like behaviour and main non-equilibrium experimental features.
Fig. 4: Characterization of vortex dynamics at non-equilibrium.
Fig. 5: Non-equilibrium real-space control over the superconducting state.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Bardeen, J. & Stephen, M. J. Theory of the motion of vortices. Phys. Rev. 140, 1197–1207 (1965).

    ADS  Article  Google Scholar 

  3. 3.

    Abrikosov, A. A. The magnetic properties of superconducting alloys. J. Phys. Chem. Solids 2, 199–208 (1957).

    ADS  Article  Google Scholar 

  4. 4.

    Tinkham, M. Introduction to Superconductivity (Dover Publication, Inc., 2004).

  5. 5.

    Fietz, W. A. & Webb, W. W. Hysteresis in superconducting alloys—temperature and field dependence of dislocation pinning in niobium alloys. Phys. Rev. 178, 657–667 (1969).

    ADS  Article  Google Scholar 

  6. 6.

    Blatter, G., Feigel’Man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    ADS  Article  Google Scholar 

  7. 7.

    Dekker, C., Wöltgens, P. J. M., Koch, R. H., Hussey, B. W. & Gupta, A. Absence of a finite-temperature vortex-glass phase transition in two-dimensional YBa2Cu3O7–δ films. Phys. Rev. Lett. 69, 2712–2720 (1992).

    ADS  Article  Google Scholar 

  8. 8.

    Ma, M. & Lee, P. A. Localized superconductors. Phys. Rev. B 32, 5658–5667 (1985).

    ADS  Article  Google Scholar 

  9. 9.

    Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959).

    ADS  Article  Google Scholar 

  10. 10.

    Kapitulnik, A., Kivelson, S. A. & Spivak, B. Colloquium: anomalous metals: failed superconductors. Rev. Mod. Phys. 91, 011002 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Tsen, A. W. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys. 12, 208–212 (2016).

    Article  Google Scholar 

  13. 13.

    Dynes, R. C., Garno, J. P. & Rowell, J. M. Two-dimensional electrical conductivity in quench-condensed metal films. Phys. Rev. Lett. 40, 479–482 (1978).

    ADS  Article  Google Scholar 

  14. 14.

    Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    ADS  Article  Google Scholar 

  15. 15.

    Gantmakher, V. F., Golubkov, M. V., Lok, J. G. S. & Geim, A. K. A. Giant negative magnetoresistance of semi-insulating amorphous indium oxide films in strong magnetic fields. J. Exp. Theor. Phys. 82, 951–958 (1996).

    ADS  Google Scholar 

  16. 16.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Tamir, I. et al. Sensitivity of the superconducting state in thin films. Sci. Adv. 5, eaau3826 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 18, 1416–1420 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, H c2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966).

    ADS  Article  Google Scholar 

  21. 21.

    Foner, S. & McNiff, E. J. Upper critical fields of layered superconducting NbSe2 at low temperature. Phys. Lett. A 45, 429–430 (1973).

    ADS  Article  Google Scholar 

  22. 22.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    ADS  Article  Google Scholar 

  23. 23.

    Nader, A. & Monceau, P. Critical field of 2H-NbSe2 down to 50mK. Springerplus 3, 16 (2014).

    Article  Google Scholar 

  24. 24.

    Ambegaokar, V., Halperin, B. I., Nelson, D. R. & Siggia, E. D. Dynamics of superfluid films. Phys. Rev. B 21, 1806–1826 (1980).

    ADS  Article  Google Scholar 

  25. 25.

    Griessen, R., Hoekstra, A. F. T., Wen, H. H., Doornbos, G. & Schnack, H. G. Negative-μ vortex dynamics in high-Tc superconducting films. Physica C 282–287, 347–350 (1997).

    ADS  Article  Google Scholar 

  26. 26.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  Google Scholar 

  28. 28.

    Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2015).

    Article  Google Scholar 

  29. 29.

    Schneider, T. & Weyeneth, S. Suppression of the Berezinskii-Kosterlitz-Thouless and quantum phase transitions in two-dimensional superconductors by finite-size effects. Phys. Rev. B 90, 064501 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Lin, Y.-H., Nelson, J. & Goldman, A. M. Suppression of the Berezinskii-Kosterlitz-Thouless transition in 2D superconductors by macroscopic quantum tunneling. Phys. Rev. Lett. 109, 017002 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Rozhkov, A. & Stroud, D. Quantum melting of a two-dimensional vortex lattice at zero temperature. Phys. Rev. B 54, 12697–12700 (1996).

    ADS  Article  Google Scholar 

  33. 33.

    Choi, M. Y. Quantum Hall effect in ideal superconducting arrays at zero temperature. Phys. Rev. B 50, 10088–10091 (1994).

    ADS  Article  Google Scholar 

  34. 34.

    Stern, A. Quantum Hall fluid of vortices in a two-dimensional array of Josephson junctions. Phys. Rev. B 50, 10092–10106 (1994).

    ADS  Article  Google Scholar 

  35. 35.

    Onogi, T. & Doniach, S. Simulation of quantum melting of the vortex lattice and of fractional quantum Hall-like states of the quantum vortex liquid in 2D superconductors. Solid State Commun. 98, 1–5 (1996).

    ADS  Article  Google Scholar 

  36. 36.

    Feigel’man, M. V., Geshkenbein, V. B. & Larkin, A. I. Pinning and creep in layered superconductors. Physica C 167, 177–187 (1990).

    ADS  Article  Google Scholar 

  37. 37.

    Le, L. P. et al. Magnetic penetration depth in layered compound NbSe2 measured by muon spin relaxation. Physica C 185–189, 2715–2716 (1991).

    ADS  Article  Google Scholar 

  38. 38.

    Mattheiss, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Rhodes and V. Vinokour for fruitful discussions and input. This research was primarily supported by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634), the Global Research Laboratory (GRL) Program (2016K1A1A2912707) funded by the Ministry of Science, ICT and Future Planning via the National Research Foundation of Korea (NRF), and Honda Research Institute USA Inc. We acknowledge computing resources from Columbia University’s Shared Research Computing Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York State Empire State Development, Division of Science Technology and Innovation (NYSTAR) Contract C090171, both awarded 15 April 2010. A.J.M. and D.M.K. were supported by the Basic Energy Sciences Division of the US Department of Energy under grant DE-SC0018218. D.M.K. additionally acknowledges support by the Deutsche Forschungsgemeinschaft through the Emmy Noether program (KA 3360/2-1). This research was also supported by The Israel Science Foundation (ISF grant no. 556/17), the Minerva Foundation, Federal German Ministry for Education and Research, grant no. 71294.

Author information

Affiliations

Authors

Contributions

The experiment was designed by A.B. and E.J.T., devices fabricated by A.B., E.J.T. and A.W., data taken by A.B., E.J.T. and D.W., analysis by A.B. and E.J.T., theory and simulation by D.M.K. and A.J.M., and hBN crystals grown by K.W. and T.T. All authors contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to A. Benyamini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Hadar Steinberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Supplementary references 1–8.

Supplementary Video 1

Uniform flow, J / Jc = 0.22, B / Hc2 = 0.16.

Supplementary Video 2

Uniform flow, J / Jc = 0.43, B / Hc2 = 0.16.

Supplementary Video 3

Uniform flow, J / Jc = 0.65, B / Hc2 = 0.16.

Supplementary Video 4

Pinning, J / Jc = 0.022, B / Hc2 = 0.04.

Supplementary Video 5

Pinning, J / Jc = 0.09, B / Hc2 = 0.04.

Supplementary Video 6

Pinning, J / Jc = 0.17, B / Hc2 = 0.04.

Supplementary Video 7

Pinning, J / Jc = 0.43, B / Hc2 = 0.04.

Supplementary Video 8

Pinning, J / Jc = 0.02, B / Hc2 = 0.08.

Supplementary Video 9

Pinning, J / Jc = 0.09, B /Hc2 = 0.08.

Supplementary Video 10

Pinning, J / Jc = 0.17, B / Hc2 = 0.08.

Supplementary Video 11

Pinning, J / Jc = 0.43, B / Hc2 = 0.08.

Supplementary Video 12

Non-uniform flow, J / Jc = 0.43, B / Hc2 = 0.08.

Supplementary Video 13

Non-uniform flow, J / Jc = 0.87, B / Hc2 = 0.08.

Supplementary Video 14

Non-uniform flow, J / Jc = 1.7, B / Hc2 = 0.08.

Supplementary Video 15

Non-uniform flow, J / Jc = 2.6, B / Hc2 = 0.08.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benyamini, A., Telford, E.J., Kennes, D.M. et al. Fragility of the dissipationless state in clean two-dimensional superconductors. Nat. Phys. 15, 947–953 (2019). https://doi.org/10.1038/s41567-019-0571-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing