Generation and sampling of quantum states of light in a silicon chip

Abstract

Implementing large instances of quantum algorithms1,2,3,4,5 requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components6. Although established semiconductor fabrication processes can integrate many photonic components7, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here, we report the on-chip generation and algorithmic processing of quantum states of light with up to eight photons. Switching between different optical pumping regimes, we implement the scattershot8,9, Gaussian10 and standard boson sampling3,11,12,13,14 protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra4. Our techniques can be readily scaled for the on-chip implementation of specialized quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Silicon photonic chip and experimental configuration.
Fig. 2: Results for SBS.
Fig. 3: Experimental results for GBS.
Fig. 4: Reconstructed FC profile.

Data availability

The data that support the plots within this paper and other findings of this study are available at https://doi.org/10.6084/m9.figshare.7492991.

References

  1. 1.

    Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994).

  2. 2.

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  4. 4.

    Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 260, 285–291 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Neville, A. et al. Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017).

    Article  Google Scholar 

  16. 16.

    Olivares, D. G., Peropadre, B., Aspuru-Guzik, A. & García-Ripoll, J. J. Quantum simulation with a boson sampling circuit. Phys. Rev. A 94, 022319 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Arrazola, J. M. & Bromley, T. R. Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  Article  Google Scholar 

  19. 19.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Harris, N. C. et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047 (2014).

    Google Scholar 

  22. 22.

    Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Spring, J. B. et al. Chip-based array of near-identical, pure, heralded single-photon sources. Optica 4, 90–96 (2017).

    Article  Google Scholar 

  24. 24.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Wang, H. et al. Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120, 230502 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012).

    Google Scholar 

  30. 30.

    Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Ding, Y., Peucheret, C., Ou, H. & Yvind, K. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 39, 5348–5350 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    Ding, Y., Ou, H. & Peucheret, C. Ultra-high-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett. 38, 2732–2734 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Bentivegna, M. et al. Bayesian approach to boson sampling validation. Int. J. Quantum Inf. 12, 1560028 (2014).

    MathSciNet  Article  Google Scholar 

  36. 36.

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Caianiello, E. R. Combinatorics and Renormalization in Quantum Field Theory (W. A. Benjamin, 1973).

  39. 39.

    Kruse, R. et al. A detailed study of Gaussian boson sampling. Preprint at https://arxiv.org/abs/1801.07488 (2018).

  40. 40.

    Clements, W. R. et al. Approximating vibronic spectroscopy with imperfect quantum optics. J. Phys. B At. Mol. Opt. Phys. 51, 245503 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Shen, Y. et al. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device. Chem. Sci. 9, 836–840 (2018).

    Article  Google Scholar 

  42. 42.

    Wilkes, C. M. et al. 60 dB high-extinction auto-configured Mach–Zehnder interferometer. Opt. Lett. 41, 5318–5321 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light. Sci. Appl. 6, e17100 (2017).

    Article  Google Scholar 

  44. 44.

    Schuck, C. et al. Matrix of integrated superconducting single-photon detectors with high timing resolution. IEEE Trans. Appl. Supercond. 23, 2201007 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Maraviglia, R. Chadwick, C. Sparrow, L. Banchi, G. Sinclair and D. Bacco for useful discussions and W.A. Murray, M. Loutit, E. Johnston, H. Fedder, M. Schlagmüller, M. Borghi and J. Lennon for technical assistance. The authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council (ERC) and European Commission (EC) funded grants PICQUE, BBOI, QuChip, QuPIC, QITBOX, Quantera-eranet Square, VILLUM FONDEN, QUANPIC (ref. 00025298) and the Center of Excellence, Denmark SPOC (ref. DNRF123). J.W. acknowledges support from the Beijing Academy of Quantum Information Sciences (Y18G21) and from The Key R&D Program of Guangdong province (2018B030329001). A.L. acknowledges fellowship support from EPSRC (EP/N003470/1).

Author information

Affiliations

Authors

Contributions

S.P., Y.D., R.S., J.W., M.G.T. and A.L. designed the experiment. Y.D. fabricated the silicon photonics device. S.P., R.S. and C.V. performed the experiment. S.P. and L.C. analysed the data. S.P., Y.D., R.S., L.C. and A.L. wrote the manuscript with feedback from all authors. K.R., L.K.O., M.G.T. and A.L. managed the project.

Corresponding authors

Correspondence to Yunhong Ding or Jianwei Wang or Mark G. Thompson or Anthony Laing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Sonja Barkhofen, Robert Keil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paesani, S., Ding, Y., Santagati, R. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019). https://doi.org/10.1038/s41567-019-0567-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing