Letter | Published:

Kondo screening in a charge-insulating spinon metal

Abstract

The Kondo effect, an eminent manifestation of many-body physics in condensed matter, is traditionally explained as exchange scattering of conduction electrons on a spinful impurity in a metal1,2. The resulting screening of the impurity’s local moment by the electron Fermi sea is characterized by a Kondo temperature TK, below which the system enters a strongly coupled regime. In recent years, this effect has found realizations beyond the bulk-metal paradigm in many other conduction-electron systems, such as in quantum dots in semiconductor heterostructures3,4 and nanomaterials5,6,7, in quantum point contacts8,9, in graphene10,11 and in topological insulators12, and has also been predicted for three-dimensional Dirac and Weyl semimetals13. Here, we report an experimental observation of Kondo screening by charge-neutral quasiparticles. This occurs in a charge-insulating quantum spin liquid, where spinon excitations forming a Fermi surface take the role of conduction electrons. The observed impurity behaviour therefore bears a strong resemblance to the conventional case in a metal. The discovered spinon-based Kondo effect provides a prominent platform for characterizing spin liquids in the general context of utilizing impurities as in situ probes of host electron states14,15, and offers a unique way to manipulate these enigmatic states.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available via https://doi.org/10.15128/r241687h44k or from the corresponding author upon reasonable request.

Additional information

Journal peer review information: Nature Physics thanks Peter Baker and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

  2. 2.

    Hewson, A. C The Kondo Problem to Heavy Fermions (Cambridge University Press, 1997).

  3. 3.

    Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

  4. 4.

    Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

  5. 5.

    Nygård, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

  6. 6.

    Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

  7. 7.

    Yu, L. H. & Natelson, D. The Kondo effect in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004).

  8. 8.

    Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: a Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).

  9. 9.

    Iqbal, M. J. et al. Odd and even Kondo effects from emergent localization in quantum point contacts. Nature 501, 79–83 (2013).

  10. 10.

    Chen, J.-H., Li, L., Cullen, W. G., Williams, E. D. & Fuhrer, M. S. Tunable Kondo effect in graphene with defects. Nat. Phys. 7, 535–538 (2011).

  11. 11.

    Fritz, L. & Vojta, M. The physics of Kondo impurities in graphene. Rep. Prog. Phys. 76, 032501 (2013).

  12. 12.

    Cha, J. J. et al. Magnetic doping and Kondo effect in Bi2Se3 nanoribbons. Nano Lett. 10, 1076–1081 (2010).

  13. 13.

    Mitchell, A. K. & Fritz, L. Kondo effect in three-dimensional Dirac and Weyl systems. Phys. Rev. B 92, 121109(R) (2015).

  14. 14.

    Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45–108 (2009).

  15. 15.

    Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

  16. 16.

    Khaliullin, G. & Fulde, P. Magnetic impurity in a system of correlated electrons. Phys. Rev. B 52, 9514–9519 (1995).

  17. 17.

    Kolezhuk, A., Sachdev, S., Biswas, R. R. & Chen, P. Theory of quantum impurities in spin liquids. Phys. Rev. B 74, 165114 (2006).

  18. 18.

    Ribeiro, P. & Lee, P. A. Magnetic impurity in a U(1) spin liquid with a spinon Fermi surface. Phys. Rev. B 83, 235119 (2011).

  19. 19.

    Dhochak, K., Shankar, R. & Tripathi, V. Magnetic impurities in the honeycomb Kitaev model. Phys. Rev. Lett. 105, 117201 (2010).

  20. 20.

    Vojta, M., Mitchell, A. K. & Zschocke, F. Kondo impurities in the Kitaev spin liquid: numerical renormalization group solution and gauge-flux-driven screening. Phys. Rev. Lett. 117, 037202 (2016).

  21. 21.

    Li, Y. et al. Gapless quantum spin liquid in the S = 1/2 anisotropic kagome antiferromagnet ZnCu3(OH)6SO4. New J. Phys. 16, 093011 (2014).

  22. 22.

    Norman, M. R. Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

  23. 23.

    Gomilšek, M. et al. Instabilities of spin-liquid states in a quantum kagome antiferromagnet. Phys. Rev. B 93, 060405(R) (2016).

  24. 24.

    Gomilšek, M. et al. μSR insight into the impurity problem in quantum kagome antiferromagnets. Phys. Rev. B 94, 024438 (2016).

  25. 25.

    Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO4. Phys. Rev. X 8, 031028 (2018).

  26. 26.

    Mydosh, J. A. Spin glasses: redux: an updated experimental/materials survey. Rep. Prog. Phys. 78, 052501 (2015).

  27. 27.

    Žitko, R. in Physical Properties of Nanosystems (ed. Bonča, J.) 247–257 (Springer, 2011).

  28. 28.

    Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000).

  29. 29.

    Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, 1961).

  30. 30.

    Gomilšek, M. et al. Field-induced instability of a gapless spin liquid with a spinon Fermi surface. Phys. Rev. Lett. 119, 137205 (2017).

  31. 31.

    Kretinin, A. V. et al. Spin-1/2 Kondo effect in an InAs nanowire quantum dot: unitary limit, conductance scaling and Zeeman splitting. Phys. Rev. B 84, 245316 (2011).

  32. 32.

    Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).

  33. 33.

    Colbert, J. R., Drew, H. D. & Lee, P. A. Magneto-optical Faraday effect in spin-liquid candidates. Phys. Rev. B 90, 121105(R) (2014).

  34. 34.

    Gao, Y. H. & Chen, G. Topological thermal Hall effect for topological excitations in spin liquid: emergent Lorentz force on the spinons. Preprint at https://arxiv.org/abs/1901.01522 (2019).

  35. 35.

    Metlitski, M. A., Mross, D. F., Sachdev, S. & Senthil, T. Cooper pairing in non-Fermi liquids. Phys. Rev. B 91, 115111 (2015).

  36. 36.

    Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

  37. 37.

    Paddison, J. A. M. et al. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13, 117–122 (2017).

  38. 38.

    Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

  39. 39.

    Janša, N. et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet. Nat. Phys. 14, 786–790 (2018).

  40. 40.

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

  41. 41.

    Yaouanc, A. & Réotier, De, P. D. Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford University Press, 2011).

  42. 42.

    Wilson, K. G. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

  43. 43.

    Žitko, R. & Pruschke, T. Energy resolution and discretization artefacts in the numerical renormalization group. Phys. Rev. B 79, 085106 (2009).

  44. 44.

    Weichselbaum, A. & von Delft, J. Sum-rule conserving spectral functions from the numerical renormalization group. Phys. Rev. Lett. 99, 076402 (2007).

  45. 45.

    Höck, M. & Schnack, J. Numerical renormalization group calculations of the magnetization of Kondo impurities with and without uniaxial anisotropy. Phys. Rev. B 87, 184408 (2013).

  46. 46.

    Lin, C. L., Wallash, A., Crow, J. E., Mihalisin, T. & Schlottmann, P. Heavy-fermion behavior and the single-ion Kondo model. Phys. Rev. Lett. 58, 1232–1235 (1987).

  47. 47.

    Kusminskiy, V. S., Beach, A., Castro Neto, K. & Campbell, D. Mean-field study of the heavy-fermion metamagnetic transition. Phys. Rev. B 77, 094419 (2008).

  48. 48.

    Golež, D. & Žitko, R. Lifshitz phase transitions in the ferromagnetic regime of the Kondo lattice model. Phys. Rev. B 88, 054431 (2013).

Download references

Acknowledgements

The authors acknowledge discussions with T. Lancaster and D. Manevski. This work is partially based on experiments performed at the Swiss Muon Source SμS, Paul Scherrer Institute, Villigen, Switzerland. Financial support of the Slovenian Research Agency under programmes P1-0125 and P1-0044 and project no. J1-7259 is acknowledged. M.G. is grateful to EPSRC (UK) for financial support (grant no. EP/N024028/1). Q.M.Z. was supported by the Ministry of Science and Technology of China (2016YFA0300504 and 2017YFA0302904) and the NSF of China (11774419 and 11474357).

Author information

A.Z. conceived, designed and supervised the project. M.G. and A.Z. performed the μSR measurements, with technical assistance from C.B., and analysed the data. R.Ž. carried out the NRG calculations. M.G. developed the percolation-theory-based model for the spin of impurity clusters. Y.L. and Q.M.Z. synthesized and characterized the sample. All authors discussed the results. A.Z. wrote the paper with feedback from all the authors.

Competing interests

The authors declare no competing interests.

Correspondence to A. Zorko.

Supplementary information

  1. Supplementary Information

    Supplementary Text, Supplementary Figs. 1–7 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Phase diagram of Zn-brochantite.
Fig. 2: Static μSR signature of the Kondo effect.
Fig. 3: Dynamical μSR signature of the Kondo effect.