Avoided quasiparticle decay from strong quantum interactions


Quantum states of matter—such as solids, magnets and topological phases—typically exhibit collective excitations (for example, phonons, magnons and anyons)1. These involve the motion of many particles in the system, yet, remarkably, act like a single emergent entity—a quasiparticle. Known to be long lived at the lowest energies, quasiparticles are expected to become unstable when encountering the inevitable continuum of many-particle excited states at high energies, where decay is kinematically allowed. Although this is correct for weak interactions, we show that strong interactions generically stabilize quasiparticles by pushing them out of the continuum. This general mechanism is straightforwardly illustrated in an exactly solvable model. Using state-of-the-art numerics, we find it at work in the spin-\(1/2\) triangular-lattice Heisenberg antiferromagnet (TLHAF). This is surprising given the expectation of magnon decay in this paradigmatic frustrated magnet. Turning to existing experimental data, we identify the detailed phenomenology of avoided decay in the TLHAF material2 Ba3CoSb2O9, and even in liquid helium3,4,5,6,7,8, one of the earliest instances of quasiparticle decay9. Our work unifies various phenomena above the universal low-energy regime in a comprehensive description. This broadens our window of understanding of many-body excitations, and provides a new perspective for controlling and stabilizing quantum matter in the strongly interacting regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Avoided quasiparticle decay in a solvable model.
Fig. 2: Avoided decay in an Ising ladder.
Fig. 3: Avoided decay in the spin-\(\frac{{\mathbf{1}}}{{\mathbf{2}}}\) TLHAF with δ = 0.05.
Fig. 4: Avoided quasiparticle decay, genuine decay and level–continuum repulsion in experimental data for the TLHAF material Ba3CoSb2O9, piperazinium hexachlorodicuprate (PHCC) and superfluid helium.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

Details about the DMRG code are provided in the Methods and in the Supplementary Information.


  1. 1.

    Liesbeth, V. et al. The quasiparticle zoo. Nat. Phys. 12, 1085–1089 (2016).

    Article  Google Scholar 

  2. 2.

    Ito, S. et al. Structure of the magnetic excitations in the spin-1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9. Nat. Commun. 8, 235 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Woods, A. D. B. & Cowley, R. A. Structure and excitations of liquid helium. Rep. Prog. Phys. 36, 235 (1973).

    Article  Google Scholar 

  4. 4.

    Donnelly, J. A. & Hills, R. N. Specific heat and dispersion curve for helium II. J. Low Temp. Phys. 44, 471–489 (1981).

    ADS  Article  Google Scholar 

  5. 5.

    Glyde, H. R., Gibbs, M. R., Stirling, W. G. & Adams, M. A. Excitations in superfluid 4He beyond the roton. Europhys. Lett. 43, 422–426 (1998).

    ADS  Article  Google Scholar 

  6. 6.

    Gibbs, M. R., Andersen, K. H., Stirling, W. G. & Schober, H. The collective excitations of normal and superfluid 4He: the dependence on pressure and temperature. J. Phys. Condens. Matter. 11, 603–628 (1999).

    ADS  Article  Google Scholar 

  7. 7.

    Azuah, R. T., Diallo, S. O., Adams, M. A., Kirichek, O. & Glyde, H. R. Phonon–roton modes of liquid 4He beyond the roton in the porous medium MCM-41. Phys. Rev. B 88, 024510 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Glyde, H. R. Excitations in the quantum liquid 4He: a review. Rep. Prog. Phys. 81, 014501 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Pitaevskii, L. P. Properties of the spectrum of elementary excitations near the disintegration threshold of the excitations. J. Exp. Theor. Phys. 9, 830 (1959).

    MATH  Google Scholar 

  10. 10.

    Zhitomirsky, M. E. & Chernyshev, A. L. Colloquium: spontaneous magnon decays. Rev. Mod. Phys. 85, 219–242 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Stone, M. B., Zaliznyak, I. A., Hong, T., Broholm, C. L. & Reich, D. H. Quasiparticle breakdown in a quantum spin liquid. Nature 440, 187–190 (2006).

    ADS  Article  Google Scholar 

  12. 12.

    Masuda, T. et al. Dynamics of composite haldane spin chains in IPA–CuCl3. Phys. Rev. Lett. 96, 047210 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Oh, J. et al. Magnon breakdown in a two-dimensional triangular lattice Heisenberg antiferromagnet of multiferroic LuMnO3. Phys. Rev. Lett. 111, 257202 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Robinson, N. J., Essler, F. H. L., Cabrera, I. & Coldea, R. Quasiparticle breakdown in the quasi-one-dimensional Ising ferromagnet CoNb2O6. Phys. Rev. B 90, 174406 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Hong, T. et al. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet. Nat. Commun. 8, 15148 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Gaveau, B. & Schulman, L. S. Limited quantum decay. J. Phys. A. 28, 7359–7374 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Zhitomirsky, M. E. Decay of quasiparticles in quantum spin liquids. Phys. Rev. B 73, 100404 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    ADS  Article  Google Scholar 

  19. 19.

    Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Zaletel, M. P., Mong, R. S. K., Karrasch, C., Moore, J. E. & Pollmann, F. Time-evolving a matrix product state with long-ranged interactions. Phys. Rev. B 91, 165112 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Kojima, Y. et al. Quantum magnetic properties of the spin-\({\textstyle{1 \over 2}}\) triangular-lattice antiferromagnet Ba2La2CoTe2O12. Phys. Rev. B 98, 174406 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Huse, D. A. & Elser, V. Simple variational wave functions for two-dimensional Heisenberg spin-\({\textstyle{1 \over 2}}\) antiferromagnets. Phys. Rev. Lett. 60, 2531–2534 (1988).

    ADS  Article  Google Scholar 

  23. 23.

    Bernu, B., Lhuillier, C. & Pierre, L. Signature of Néel order in exact spectra of quantum antiferromagnets on finite lattices. Phys. Rev. Lett. 69, 2590–2593 (1992).

    ADS  Article  Google Scholar 

  24. 24.

    Chernyshev, A. L. & Zhitomirsky, M. E. Spin waves in a triangular lattice antiferromagnet: decays, spectrum renormalization and singularities. Phys. Rev. B 79, 144416 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Zheng, W., Fjærestad, J. O., Singh, R. R. P., McKenzie, R. H. & Coldea, R. Excitation spectra of the spin- \({\textstyle{1 \over 2}}\) triangular-lattice Heisenberg antiferromagnet. Phys. Rev. B 74, 224420 (2006).

    ADS  Article  Google Scholar 

  26. 26.

    Mourigal, M., Fuhrman, W. T., Chernyshev, A. L. & Zhitomirsky, M. E. Dynamical structure factor of the triangular-lattice antiferromagnet. Phys. Rev. B 88, 094407 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Gohlke, M., Verresen, R., Moessner, R. & Pollmann, F. Dynamics of the Kitaev–Heisenberg model. Phys. Rev. Lett. 119, 157203 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Verresen, R., Pollmann, F. & Moessner, R. Quantum dynamics of the square-lattice Heisenberg model. Phys. Rev. B 98, 155102 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Plumb, K. W. et al. Quasiparticle-continuum level repulsion in a quantum magnet. Nat. Phys. 12, 224–229 (2016).

    Article  Google Scholar 

  30. 30.

    Bhatt, R. N. & McMillan, W. L. Theory of anomalous dispersion in liquid He4. Phys. Rev. A 10, 1591–1597 (1974).

    ADS  Article  Google Scholar 

  31. 31.

    Demkov, Y. N. & Osherov, V. I. Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration. Sov. J. Exp. Theor. Phys. 26, 916 (1968).

    ADS  Google Scholar 

  32. 32.

    Basko, D. M. Landau–Zener–Stueckelberg physics with a singular continuum of states. Phys. Rev. Lett. 118, 016805 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Zimering, S. Some asymptotic behavior of Stieltjes transforms. J. Math. Phys. 10, 181–183 (1969).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    White, S. R. & Affleck, I. Spectral function for the S = 1 Heisenberg antiferromagetic chain. Phys. Rev. B 77, 134437 (2008).

    ADS  Article  Google Scholar 

Download references


The authors thank R. Coldea, S. Parameswaran and S. Chernyshev for discussions, and the latter for detailed comments on the manuscript. The authors also thank I. Khaymovich for pointing out the inspiring refs. 31,32. R.V. was supported by the German Research Foundation (DFG) through the Collaborative Research Center SFB 1143. F.P. acknowledges support from DFG Research Unit FOR 1807 through grant no. PO 1370/2-1, TRR80, Nanosystems Initiative Munich (NIM) by the German Excellence Initiative, the DFG under Germany’s Excellence Strategy EXC-2111-390814868, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 771537). This research was supported in part by the National Science Foundation under grant no. NSF PHY-1748958 and by the Heising–Simons Foundation.

Author information




All authors contributed equally to this work.

Corresponding author

Correspondence to Ruben Verresen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text and Supplementary Figs. 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verresen, R., Moessner, R. & Pollmann, F. Avoided quasiparticle decay from strong quantum interactions. Nat. Phys. 15, 750–753 (2019). https://doi.org/10.1038/s41567-019-0535-3

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing