News & Views | Published:

MICROFLUIDICS

How to tame a giant oscillation

Experiments and simulations show that trains of droplets in microfluidic networks undergo synchronized oscillations, and that strategies to prevent these oscillations can help maintain uniform distribution of red blood cells in microcirculation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Krogh, A. Anatomy and Physiology of Capillaries (Yale University Press, 1922).

  2. 2.

    Fung, Y. C. Microvasc. Res. 5, 34–48 (1973).

  3. 3.

    Cybulski, O., Garstecki, P. & Grzybowski, B. A. Nat. Phys. https://doi.org/10.1038/s41567-019-0486-8 (2019).

  4. 4.

    Schindler, M. & Ajdari, A. Phys. Rev. Lett. 100, 044501 (2008).

  5. 5.

    Kiani, M. F., Pries, A. R., Hsu, L. L., Sarelius, I. H. & Cokelet, G. R. Am. J. Physiol. 266, H1822–H1828 (1994).

  6. 6.

    Geddes, J. B., Carr, R. T., Wu, F., Lao, Y. & Maher, M. Chaos 20, 045123 (2010).

Download references

Author information

Correspondence to Siva A. Vanapalli.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Droplets injected continuously into a simple microfluidic network form trains.