Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics


Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Strain focusing with a Gaussian SAW resonator.
Fig. 2: Optically detected acoustic paramagnetic resonance in silicon carbide.
Fig. 3: Coherent mechanical driving of kk spin ensembles.
Fig. 4: Spatially mapping mechanical spin drive rates and defect comparisons.

Data availability

All data are available upon request to the corresponding author.


  1. 1.

    Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Bleszynski Jayich, A. C. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Heremans, F. J., Yale, C. G. & Awschalom, D. D. Control of spin defects in wide-bandgap semiconductors for quantum technologies. Proc. IEEE 104, 2009–2023 (2016).

    Article  Google Scholar 

  8. 8.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

    Google Scholar 

  9. 9.

    Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Hong, S. et al. Coherent, mechanical control of a single electronic spin. Nano. Lett. 12, 3920–3924 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Bleszynski Jayich, A. C. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

    Article  Google Scholar 

  13. 13.

    MacQuarrie, E. R. et al. Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator. Optica 2, 233–238 (2015).

    Article  Google Scholar 

  14. 14.

    Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

    Article  Google Scholar 

  15. 15.

    MacQuarrie, E. R., Gosavi, T. A., Bhave, S. A. & Fuchs, G. D. Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator. Phys. Rev. B 92, 224419 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Barfuss, A. et al. Phase-controlled coherent dynamics of a single-spin under closed-contour interactions. Nat. Phys. 14, 1087–1091 (2018).

    Article  Google Scholar 

  17. 17.

    Schuetz, M. J. A. et al. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X 5, 031031 (2015).

    Google Scholar 

  18. 18.

    Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Moores, B. A., Sletten, L. R., Viennot, J. J. & Lehnert, K. W. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Golter, D. A., Oo, T., Amezcua, M., Stewart, K. A. & Wang, H. Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett. 116, 143602 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Golter, D. A. et al. Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X 6, 041060 (2016).

    Google Scholar 

  23. 23.

    Takagaki, Y. et al. Guided propagation of surface acoustic waves in AlN and GaN films grown on 4H-SiC (0001) substrates. Phys. Rev. B 66, 155439 (2002).

    ADS  Article  Google Scholar 

  24. 24.

    Whiteley, S. J., Heremans, F. J., Wolfowicz, G., Awschalom, D. D. & Holt, M. V. Imaging dynamically-driven strain at the nanometer-scale using stroboscopic scanning X-ray diffraction microscopy. Preprint at (2018).

  25. 25.

    Holt, M., Harder, R., Winarski, R. & Volker, R. Nanoscale hard D-ray microscopy methods for materials studies. Annu. Rev. Mater. Sci. 43, 183–211 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Hruszkewycz, S. O. et al. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nat. Mater. 16, 244–251 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Pateras, A. et al. Mesoscopic elastic distortions in GaAs quantum dot heterostructures. Nano. Lett. 18, 2780–2786 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

    Article  Google Scholar 

  29. 29.

    Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Udvarhelyi, P., Shkolnikov, V. O., Gali, A., Burkard, G. & Pályi, A. Spin–strain interaction in nitrogen-vacancy centers in diamond. Phys. Rev. B 98, 075201 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano. Lett. 10, 3168–3172 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Klimov, P. V., Falk, A. L., Buckley, B. B. & Awschalom, D. D. Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 087601 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    Doherty, M. W. et al. Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, 1501015 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Lee, K. W. et al. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys. Rev. Appl. 6, 034005 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Chen, H. Y., MacQuarrie, E. R. & Fuchs, G. D. Orbital state manipulation of a diamond nitrogen-vacancy center using a mechanical resonator. Phys. Rev. Lett. 120, 167401 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    MacQuarrie, E. R., Otten, M., Gray, S. K. & Fuchs, G. D. Cooling a mechanical resonator with nitrogen-vacancy centers using a room temperature excited state spin–strain interaction. Nat. Commun. 8, 14358 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Barson, M. S. J. et al. Nanomechanical sensing using spins in diamond. Nano. Lett. 17, 1496–1503 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Udvarhelyi, P. & Gali, A. Ab initio spin–strain coupling parameters of divacancy qubits in silicon carbide. Phys. Rev. Appl. 10, 05410 (2018).

    Article  Google Scholar 

  41. 41.

    Bennett, S. D. et al. Phonon-induced spin–spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett. 110, 156402 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    Kepesidis, K. V., Bennett, S. D., Portolan, S., Lukin, M. D. & Rabl, P. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys. Rev. B 88, 064105 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Siegman, A. E. Lasers (University Science Books, Sausalito, 1986).

  44. 44.

    Wolfowicz, G. et al. Optical charge state control of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).

    ADS  Article  Google Scholar 

Download references


The devices and experiments were supported by the Air Force Office of Scientific Research; material for this work was supported by the Department of Energy (DOE). SXDM measurements were performed at the Hard X-ray Nanprobe Beamline, operated by the Center for Nanoscale Materials at the Advanced Photon Source, Argonne National Laboratory (contract no. DE-AC02-06CH11357). S.J.W. and K.J.S. were supported by the NSF GRFP, C.P.A. was supported by the Department of Defense through the NDSEG Program, and M.V.H., F.J.H., A.N.C., G.G. and D.D.A. were supported by the DOE, Office of Basic Energy Sciences. This work made use of the UChicago MRSEC (NSF DMR-1420709) and Pritzker Nanofabrication Facility, which receives support from the SHyNE, a node of the NSF’s National Nanotechnology Coordinated Infrastructure (NSF ECCS-1542205). The authors thank P. J. Duda, P. V. Klimov, P. L. Yu, S. A. Bhave, H. Seo and N. Schine for insightful discussions and B. B. Zhou, S. Bayliss and A. L. Yeats for careful reading of the manuscript.

Author information




S.J.W. fabricated devices. S.J.W. and G.W. performed the experiments and data analysis. C.P.A. and A.B. processed materials. H.M. and M.Y. performed DFT calculations. K.J.S. and G.K. helped with device characterization. M.V.H. executed X-ray imaging experiments. F.J.H., A.N.C., D.I.S., G.G. and D.D.A. advised on all efforts. All authors contributed to discussions and production of the manuscript.

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–3 and Supplementary References 1–64.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whiteley, S.J., Wolfowicz, G., Anderson, C.P. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing