Hybrid spin–mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high-quality-factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized using a stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin–strain coupling for various defects in SiC with C3v symmetry. This reveals the importance of shear strain for future device engineering and enhanced spin–mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant for sensing applications. Finally, we show mechanically driven Autler–Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All data are available upon request to the corresponding author.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

  2. 2.

    Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Bleszynski Jayich, A. C. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

  3. 3.

    Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  4. 4.

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

  5. 5.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

  6. 6.

    Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

  7. 7.

    Heremans, F. J., Yale, C. G. & Awschalom, D. D. Control of spin defects in wide-bandgap semiconductors for quantum technologies. Proc. IEEE 104, 2009–2023 (2016).

  8. 8.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

  9. 9.

    Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

  10. 10.

    Hong, S. et al. Coherent, mechanical control of a single electronic spin. Nano. Lett. 12, 3920–3924 (2012).

  11. 11.

    Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

  12. 12.

    Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Bleszynski Jayich, A. C. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

  13. 13.

    MacQuarrie, E. R. et al. Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator. Optica 2, 233–238 (2015).

  14. 14.

    Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

  15. 15.

    MacQuarrie, E. R., Gosavi, T. A., Bhave, S. A. & Fuchs, G. D. Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator. Phys. Rev. B 92, 224419 (2015).

  16. 16.

    Barfuss, A. et al. Phase-controlled coherent dynamics of a single-spin under closed-contour interactions. Nat. Phys. 14, 1087–1091 (2018).

  17. 17.

    Schuetz, M. J. A. et al. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X 5, 031031 (2015).

  18. 18.

    Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).

  19. 19.

    Moores, B. A., Sletten, L. R., Viennot, J. J. & Lehnert, K. W. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018).

  20. 20.

    Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

  21. 21.

    Golter, D. A., Oo, T., Amezcua, M., Stewart, K. A. & Wang, H. Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett. 116, 143602 (2016).

  22. 22.

    Golter, D. A. et al. Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X 6, 041060 (2016).

  23. 23.

    Takagaki, Y. et al. Guided propagation of surface acoustic waves in AlN and GaN films grown on 4H-SiC (0001) substrates. Phys. Rev. B 66, 155439 (2002).

  24. 24.

    Whiteley, S. J., Heremans, F. J., Wolfowicz, G., Awschalom, D. D. & Holt, M. V. Imaging dynamically-driven strain at the nanometer-scale using stroboscopic scanning X-ray diffraction microscopy. Preprint at https://arxiv.org/abs/1808.04920 (2018).

  25. 25.

    Holt, M., Harder, R., Winarski, R. & Volker, R. Nanoscale hard D-ray microscopy methods for materials studies. Annu. Rev. Mater. Sci. 43, 183–211 (2013).

  26. 26.

    Hruszkewycz, S. O. et al. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nat. Mater. 16, 244–251 (2017).

  27. 27.

    Pateras, A. et al. Mesoscopic elastic distortions in GaAs quantum dot heterostructures. Nano. Lett. 18, 2780–2786 (2018).

  28. 28.

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

  29. 29.

    Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

  30. 30.

    Udvarhelyi, P., Shkolnikov, V. O., Gali, A., Burkard, G. & Pályi, A. Spin–strain interaction in nitrogen-vacancy centers in diamond. Phys. Rev. B 98, 075201 (2018).

  31. 31.

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano. Lett. 10, 3168–3172 (2010).

  32. 32.

    Klimov, P. V., Falk, A. L., Buckley, B. B. & Awschalom, D. D. Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 087601 (2014).

  33. 33.

    Doherty, M. W. et al. Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).

  34. 34.

    Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, 1501015 (2015).

  35. 35.

    Lee, K. W. et al. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys. Rev. Appl. 6, 034005 (2016).

  36. 36.

    Chen, H. Y., MacQuarrie, E. R. & Fuchs, G. D. Orbital state manipulation of a diamond nitrogen-vacancy center using a mechanical resonator. Phys. Rev. Lett. 120, 167401 (2018).

  37. 37.

    MacQuarrie, E. R., Otten, M., Gray, S. K. & Fuchs, G. D. Cooling a mechanical resonator with nitrogen-vacancy centers using a room temperature excited state spin–strain interaction. Nat. Commun. 8, 14358 (2017).

  38. 38.

    Barson, M. S. J. et al. Nanomechanical sensing using spins in diamond. Nano. Lett. 17, 1496–1503 (2017).

  39. 39.

    Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

  40. 40.

    Udvarhelyi, P. & Gali, A. Ab initio spin–strain coupling parameters of divacancy qubits in silicon carbide. Phys. Rev. Appl. 10, 05410 (2018).

  41. 41.

    Bennett, S. D. et al. Phonon-induced spin–spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett. 110, 156402 (2013).

  42. 42.

    Kepesidis, K. V., Bennett, S. D., Portolan, S., Lukin, M. D. & Rabl, P. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys. Rev. B 88, 064105 (2013).

  43. 43.

    Siegman, A. E. Lasers (University Science Books, Sausalito, 1986).

  44. 44.

    Wolfowicz, G. et al. Optical charge state control of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).

Download references


The devices and experiments were supported by the Air Force Office of Scientific Research; material for this work was supported by the Department of Energy (DOE). SXDM measurements were performed at the Hard X-ray Nanprobe Beamline, operated by the Center for Nanoscale Materials at the Advanced Photon Source, Argonne National Laboratory (contract no. DE-AC02-06CH11357). S.J.W. and K.J.S. were supported by the NSF GRFP, C.P.A. was supported by the Department of Defense through the NDSEG Program, and M.V.H., F.J.H., A.N.C., G.G. and D.D.A. were supported by the DOE, Office of Basic Energy Sciences. This work made use of the UChicago MRSEC (NSF DMR-1420709) and Pritzker Nanofabrication Facility, which receives support from the SHyNE, a node of the NSF’s National Nanotechnology Coordinated Infrastructure (NSF ECCS-1542205). The authors thank P. J. Duda, P. V. Klimov, P. L. Yu, S. A. Bhave, H. Seo and N. Schine for insightful discussions and B. B. Zhou, S. Bayliss and A. L. Yeats for careful reading of the manuscript.

Author information

Author notes

  1. These authors contributed equally: Samuel J. Whiteley, Gary Wolfowicz.


  1. Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA

    • Samuel J. Whiteley
    • , Gary Wolfowicz
    • , Christopher P. Anderson
    • , Alexandre Bourassa
    • , He Ma
    • , Meng Ye
    • , Kevin J. Satzinger
    • , F. Joseph Heremans
    • , Andrew N. Cleland
    • , Giulia Galli
    •  & David D. Awschalom
  2. Department of Physics, University of Chicago, Chicago, IL, USA

    • Samuel J. Whiteley
    • , Christopher P. Anderson
    • , Gerwin Koolstra
    •  & David I. Schuster
  3. Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

    • Gary Wolfowicz
  4. Department of Chemistry, University of Chicago, Chicago, IL, USA

    • He Ma
    •  & Giulia Galli
  5. The James Franck Institute, University of Chicago, Chicago, IL, USA

    • Gerwin Koolstra
    •  & David I. Schuster
  6. Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA

    • Kevin J. Satzinger
  7. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA

    • Martin V. Holt
  8. Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA

    • F. Joseph Heremans
    • , Andrew N. Cleland
    • , Giulia Galli
    •  & David D. Awschalom


  1. Search for Samuel J. Whiteley in:

  2. Search for Gary Wolfowicz in:

  3. Search for Christopher P. Anderson in:

  4. Search for Alexandre Bourassa in:

  5. Search for He Ma in:

  6. Search for Meng Ye in:

  7. Search for Gerwin Koolstra in:

  8. Search for Kevin J. Satzinger in:

  9. Search for Martin V. Holt in:

  10. Search for F. Joseph Heremans in:

  11. Search for Andrew N. Cleland in:

  12. Search for David I. Schuster in:

  13. Search for Giulia Galli in:

  14. Search for David D. Awschalom in:


S.J.W. fabricated devices. S.J.W. and G.W. performed the experiments and data analysis. C.P.A. and A.B. processed materials. H.M. and M.Y. performed DFT calculations. K.J.S. and G.K. helped with device characterization. M.V.H. executed X-ray imaging experiments. F.J.H., A.N.C., D.I.S., G.G. and D.D.A. advised on all efforts. All authors contributed to discussions and production of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to David D. Awschalom.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–9, Supplementary Tables 1–3 and Supplementary References 1–64.

About this article

Publication history