Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring quantized circular dichroism in ultracold topological matter

Abstract

The topology of two-dimensional materials traditionally manifests itself through the quantization of the Hall conductance, which is revealed in transport measurements1,2,3. Recently, it was predicted that topology can also give rise to a characteristic spectroscopic response on subjecting a Chern insulator to a circular drive: comparing the frequency-integrated depletion rates associated with drives of opposite orientation leads to a quantized response dictated by the topological Chern number of the populated Bloch band4,5. Here we experimentally demonstrate this intriguing topological effect using ultracold fermionic atoms in topological Floquet bands. In addition, our depletion-rate measurements also provide an experimental estimation of the Wannier-spread functional, a fundamental geometric property of Bloch bands related to the quantum metric6,7. Our results establish topological spectroscopic responses as a versatile probe, which could be applied to access the geometry and topology of many-body quantum systems, such as fractional Chern insulators8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantized responses in topological matter.
Fig. 2: Measurement scheme.
Fig. 3: Chiral spectra of the Floquet bands.
Fig. 4: Spectroscopic signals across the topological phase diagram.

Data availability

All data files are available from the corresponding author on request. Source data for Figs. 3 and 4 and Supplementary Figs. 14 are provided in the Supplementary Information.

References

  1. 1.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. D. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Article  Google Scholar 

  2. 2.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Tran, D. T., Dauphin, A., Grushin, A. G., Zoller, P. & Goldman, N. Probing topology by ‘heating’: quantized circular dichroism in ultracold atoms. Sci. Adv. 3, e1701207 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Tran, D. T., Cooper, N. R. & Goldman, N. Quantized Rabi oscillations and circular dichroism in quantum Hall systems. Phys. Rev. A 97, 061602(R) (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    ADS  Article  Google Scholar 

  7. 7.

    Ozawa, T. & Goldman, N. Extracting the quantum metric tensor through periodic driving. Phys. Rev. B 97, 201117(R) (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Neupert, T., Chamon, C., Iadecola, T., Santos, L. H. & Mudry, C. Fractional (Chern and topological) insulators. Phys. Scr. T164, 014005 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Fläschner, N. et al. High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice. Phys. Rev. A 97, 051601(R) (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Souza, I. & Vanderbilt, D. Dichroic f-sum rule and the orbital magnetization of crystals. Phys. Rev. B 77, 054438 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    Bennett, H. S. & Stern, E. A. Faraday effect in solids. Phys. Rev. 137, A448–A461 (1965).

    ADS  Article  Google Scholar 

  14. 14.

    Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    De Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Wang, Y. & Gedik, N. Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators. Phys. Status Solidi Rapid Res. Lett. 7, 64–71 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Gullans, M. J., Taylor, J. M., Imamoğlu, A., Ghaemi, P. & Hafezi, M. High-order multipole radiation from quantum Hall states in Dirac materials. Phys. Rev. B 95, 235439 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Liu, Y., Yang, S. A. & Zhang, F. Circular dichroism and radial Hall effects in topological materials. Phys. Rev. B 97, 035153 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Jotzu, G. et al. Experimental realisation of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Tarnowski, M. et al. Characterizing topology by dynamics: Chern number from linking number. Preprint at https://arxiv.org/abs/1709.01046 (2017).

  24. 24.

    Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nat. Phys. 7, 434–440 (2011).

    Article  Google Scholar 

  28. 28.

    Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  Google Scholar 

  29. 29.

    Weinberg, M. et al. Multiphoton excitations of quantum gases in driven optical lattices. Phys. Rev. A 92, 043621 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Wu, Z., Taylor, E. & Zaremba, E. Probing the optical conductivity of trapped charge-neutral quantum gases. Eur. Phys. Lett. 110, 26002 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Anderson, R. et al. Optical conductivity of a quantum gas. Preprint at https://arxiv.org/abs/1712.09965 (2017).

  32. 32.

    Sugawa, S., Salces-Carcoba, F., Perry, A. R., Yue, Y. & Spielman, I. B. Second Chern number of a quantum-simulated non-Abelian Yang monopole. Science 360, 1429–1434 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Lohse, M., Schweitzer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55–58 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Schüler, M. & Werner, P. Tracing the nonequilibrium topological state of Chern insulators. Phys. Rev. B 96, 155122 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Repellin, C. & Goldman, N. Detecting fractional Chern insulators through circular dichroism. Preprint at https://arxiv.org/abs/1811.08523 (2018).

  36. 36.

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).

    ADS  Article  Google Scholar 

  37. 37.

    Zheng, W. & Zhai, H. Floquet topological states in shaking optical lattices. Phys. Rev. A 89, 061603(R) (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Thonhauser, T. & Vanderbilt, D. Insulator/Chern-insulator transition in the Haldane model. Phys. Rev. B 74, 235111 (2006).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with N. R. Cooper, M. Dalmonte, A. Dauphin, A. G. Grushin, C. Repellin and P. Zoller, and they also thank P. Zoller for his insightful comments on the manuscript. This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Research Unit FOR 2414 under project number 277974659 and via the Excellence Cluster ‘The Hamburg Centre for Ultrafast Imaging - Structure, Dynamics and Control of Matter at the Atomic Scale’ under project number 194651731. B.S.R. acknowledges financial support from the European Commission (Marie Curie Fellowship). Work in Brussels is supported by the FRS-FNRS (Belgium) and the ERC Starting Grant TopoCold. T.O. is supported by the Interdisciplinary Theoretical and Mathematical Sciences Program at RIKEN.

Author information

Affiliations

Authors

Contributions

L.A., M.T., B.S.R. and N.F. obtained and analysed the experimental data, and also obtained numerical spectra, under the supervision of K.S. and C.W.; N.G. led the theoretical work; N.G., T.O. and D.T.T. performed various theoretical developments and calculations, including the study of timescale separation. All authors contributed to the interpretation of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Klaus Sengstock.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–11 and Supplementary Reference.

Supplementary Dataset 1

Source data for Figs. 3 and 4 and Supplementary Figures 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asteria, L., Tran, D.T., Ozawa, T. et al. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys. 15, 449–454 (2019). https://doi.org/10.1038/s41567-019-0417-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing