Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatiotemporal signal propagation in complex networks

Abstract

A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Propagation of signals in a complex network environment.
Fig. 2: Testing ground and characterization of network signal propagation.
Fig. 3: Classifying the zoo of propagation patterns.
Fig. 4: Dynamic regimes of signal propagation.
Fig. 5: Propagation between communities (see Methods).
Fig. 6: The universal temporal distance \({\cal L}(j \to i)\).

Data availability

All data and codes to reproduce the results presented here are freely accessible at https://github.com/CRHENS/Spatio-Temporal-/blob/master/README.md. Additional information is available from the corresponding author upon reasonable request. The only exception is the air-traffic network data, which the authors are restricted from sharing.

References

  1. 1.

    Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Kumar, J., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).

    Article  Google Scholar 

  3. 3.

    Maslov, S. & Ispolatov, I. Propagation of large concentration changes in reversible protein-binding networks. Proc. Natl Acad. Sci. USA 104, 13655–13660 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    Barzel, B. & Barabási, A.-L. Universality in network dynamics. Nat. Phys. 9, 673–681 (2013).

    Article  Google Scholar 

  5. 5.

    Barzel, B., Liu, Y.-Y. & Barabási, A.-L. Constructing minimal models for complex system dynamics. Nat. Commun. 6, 7186 (2015).

    Article  Google Scholar 

  6. 6.

    Holter, N. S., Maritan, A., Cieplak, M., Fedoroff, N. V. & Banavar, J. R. Dynamic modeling of gene expression data. Proc. Natl Acad. Sci. USA 98, 1693–1698 (2001).

    ADS  Article  Google Scholar 

  7. 7.

    Afraimovich, V. S. & Bunimovich, L. A. Dynamical networks: interplay of topology, interactions and local dynamics. Nonlinearity 20, 1761–1771 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Kirst, C., Timme, M. & Battaglia, D. Dynamic information routing in complex networks. Nat. Commun. 7, 11061 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, Cambridge, 2008).

    Google Scholar 

  10. 10.

    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Harush, U. & Barzel, B. Dynamic patterns of information flow in complex networks. Nat. Commun. 8, 2181 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Kauffman, S. The ensemble approach to understand genetic regulatory networks. Physica A 340, 733–740 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Barzel, B. & Biham, O. Quantifying the connectivity of a network: the network correlation function method. Phys. Rev. E 80, 046104 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Crucitti, P., Latora, V. & Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004).

    ADS  Article  Google Scholar 

  15. 15.

    Dobson, I., Carreras, B. A., Lynch, V. E. & Newman, D. E. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. Chaos 17, 026103 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    Voit, E. O. Computational Analysis of Biochemical Systems (Cambridge Univ. Press, New York, NY, 2000).

    Google Scholar 

  17. 17.

    Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall, London, 2006).

    Google Scholar 

  18. 18.

    Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. 9, 770–780 (2008).

    Article  Google Scholar 

  19. 19.

    Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Networks 31, 155–163 (2009).

    Article  Google Scholar 

  21. 21.

    Eckmann, J.-P., Moses, E. & Sergi, D. Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl Acad. Sci. USA 101, 14333–14337 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Ikehara, K. & Clauset, A. Characterizing the structural diversity of complex networks across domains. Preprint at https://arXiv.org/abs/1710.11304v1 (2017).

  23. 23.

    Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    ADS  Article  Google Scholar 

  26. 26.

    Robertson, C. Flowers and Insects: Lists of Visitors of Four Hundred and Fifty-three Flowers (C. Robertson, Carlinville, Il., 1929).

    Google Scholar 

  27. 27.

    Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–958 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Stern, M., Sompolinsky, H. & Abbott, L. F. Dynamics of random neural networks with bistable units. Phys. Rev. E 90, 062710 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Gardiner, C. W. Handbook of Stochastic Methods (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  30. 30.

    Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    Hayes, J. F. & Ganesh Babu, T. V. J. Modeling and Analysis of Telecommunications Networks (John Wiley & Sons, Inc, Hoboken, 2004).

    Google Scholar 

  32. 32.

    Kuramoto, Y. Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, Heidelberg, 1984).

    Google Scholar 

  33. 33.

    Newman, M. E. J. Networks - An Introduction (Oxford Univ. Press, New York, 2010).

    Google Scholar 

  34. 34.

    Schmetterer, L. & Sigmund, K. (eds) Hans Hahn Gesammelte Abhandlungen Band 1/Hans Hahn Collected Works Vol. 1 (Springer, Vienna, Austria, 1995).

  35. 35.

    Cohen, R. & Havlin, S. Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003).

    ADS  Article  Google Scholar 

  36. 36.

    Caldarelli, G. Scale-free Networks: Ccomplex Webs in Nature and Technology (Oxford Univ. Press, New York, 2007).

  37. 37.

    Wilson, K. G. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  Google Scholar 

  39. 39.

    Wai, H.-T., Scaglione, A., Harush, U., Barzel, B. & Leshem, A. RIDS: robust identification of sparse gene regulatory networks from perturbation experiments. Preprint at https://arxiv.org/abs/1612.06565 (2017).

  40. 40.

    Novozhilov, A. S., Karev, G. P. & Koonin, E. V. Biological applications of the theory of birth-and-death processes. Brief. Bioinform. 7, 70–85 (2006).

    Article  Google Scholar 

  41. 41.

    Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl Acad. Sci. USA 101, 15124–15129 (2004).

    ADS  Article  Google Scholar 

  42. 42.

    Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001).

    ADS  Article  Google Scholar 

  43. 43.

    Dodds, P. S. & Watts, D. J. A generalized model of social and biological contagion. J. Theor. Biol. 232, 587–604 (2005).

    MathSciNet  Article  Google Scholar 

  44. 44.

    Milojević, S. Power-law distributions in information science: making the case for logarithmic binning. J. Am. Soc. Inf. Sci. Technol. 61, 2417–2425 (2010).

    Article  Google Scholar 

  45. 45.

    Ravaszi, E. B. & Barabási, A.-L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

C.H. thanks the Planning and Budgeting Committee (PBC) of the Council for Higher Education, Israel, and the INSPIRE-Faculty grant (code: IFA17-PH193) for support. This work was supported by the US National Science Foundation-CRISP award no. 1735505, the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Directorate in the Prime Minister’s office, and by a grant from the Ministry of Science & Technology, Israel & Ministry of Foreign Affairs and International Cooperation General Directorate for Country Promotion, Italian Republic.

Author information

Affiliations

Authors

Contributions

All authors designed and conducted the research. C.H. and U.H. analysed the data and performed the numerical simulations. B.B. was the lead principal investigator.

Corresponding author

Correspondence to Baruch Barzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–5, Supplementary Figures 1–17 and Supplementary References 1–36.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hens, C., Harush, U., Haber, S. et al. Spatiotemporal signal propagation in complex networks. Nat. Phys. 15, 403–412 (2019). https://doi.org/10.1038/s41567-018-0409-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing