Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits

Abstract

According to quantum mechanics, chiral states cannot be non-degenerate eingenstates of a parity-conserving Hamiltonian. This is in contradiction to the existence of chiral molecules—a fact known as as the Hund paradox1. The origin of molecular and biological chirality is conjectured to be related to parity-breaking interactions2,3 or environmental decoherence4, but a quantum superposition of two chiral molecular states with distinctive optical activities has never been observed5. To make progress in addressing these questions, it would be helpful to construct an artificial quantum system that breaks the parity symmetry and that can be prepared in a superposition of two chiral states. Here we report the synthesis of the parity-breaking antisymmetric spin exchange interaction in all-to-all connected superconducting circuits, which allows us to show various chiral spin dynamics in up to five-spin clusters. We also demonstrate the entanglement of up to five qubits in Greenberger–Horne–Zeilinger states based on a three-spin chiral logic gate. Our results are a step towards quantum simulation of magnetism with antisymmetric spin exhange interaction and quantum computation with chiral spin states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Three-spin chiral dynamics induced by synthesized ASI.
Fig. 2: Chiral spin dynamics in a four-spin cluster.
Fig. 3: Chiral spin dynamics in a five-spin cluster.
Fig. 4: Generating GHZ states with ASI.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Hund, F. Zur Deutung der Molekelspektren III. Z. Physik 43, 805–826 (1927).

    ADS  Article  Google Scholar 

  2. Mason, S. F. Origins of biomolecular handedness. Nature 311, 19–23 (1984).

    ADS  Article  Google Scholar 

  3. Darquie, B. et al. Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22, 870–884 (2010).

    Article  Google Scholar 

  4. Trost, J. & Hornberger, K. Hund’s paradox and the collisional stabilization of chiral molecules. Phys. Rev. Lett. 103, 023202 (2009).

    ADS  Article  Google Scholar 

  5. Cina, J. A. & Harris, R. A. Superpositions of handed wave functions. Science 267, 832–833 (1995).

    ADS  Article  Google Scholar 

  6. Houck, A. A., Tureci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

    Article  Google Scholar 

  7. Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    ADS  Article  Google Scholar 

  8. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Article  Google Scholar 

  9. Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  10. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    ADS  Article  Google Scholar 

  11. Wang, D.-W., Cai, H., Liu, R.-B. & Scully, M. O. Mesoscopic superposition states generated by synthetic spin–orbit interaction in Fock-state lattices. Phys. Rev. Lett. 116, 220502 (2016).

    ADS  Article  Google Scholar 

  12. Dzialoshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. J. Exp. Theoret. Phys. 32, 1547–1562 (1957).

    Google Scholar 

  13. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960).

    ADS  Article  Google Scholar 

  14. Ma, X. et al. Dzyaloshinskii–Moriya interaction across an antiferromagnet–ferromagnet interface. Phys. Rev. Lett. 119, 027202 (2017).

    ADS  Article  Google Scholar 

  15. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    ADS  Article  Google Scholar 

  16. Dmitrienko, V. E. et al. Measuring the Dzyaloshinskii–Moriya interaction in a weak ferromagnet. Nat. Phys. 10, 202–206 (2014).

    Article  Google Scholar 

  17. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    ADS  Article  Google Scholar 

  18. Takagi, R. et al. Spin-wave spectroscopy of the Dzyaloshinskii–Moriya interaction in room-temperature chiral magnets hosting skyrmions. Phys. Rev. B 95, 220406 (2017).

    ADS  Article  Google Scholar 

  19. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  Google Scholar 

  20. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    ADS  Article  Google Scholar 

  21. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Article  Google Scholar 

  22. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).

    ADS  Article  Google Scholar 

  23. Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nat. Mater. 4, 323–328 (2005).

    ADS  Article  Google Scholar 

  24. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    ADS  Article  Google Scholar 

  25. Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin–electric coupling in molecular magnets. Phys. Rev. Lett. 101, 217201 (2008).

    ADS  Article  Google Scholar 

  26. Christandl, M., Datta, N., Ekert, A. & Landahl, A. J. Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004).

    ADS  Article  Google Scholar 

  27. Eldredge, Z. et al. Fast quantum state transfer and entanglement renormalization using long-range interactions. Phys. Rev. Lett. 119, 170503 (2017).

    ADS  Article  Google Scholar 

  28. Georgeot, B. & Mila, F. Chirality of triangular antiferromagnetic clusters as a qubit. Phys. Rev. Lett. 104, 200502 (2010).

    ADS  Article  Google Scholar 

  29. Scarola, V. W., Park, K. & Sarma, S. D. Chirality in quantum computation with spin cluster qubits. Phys. Rev. Lett. 93, 120503 (2004).

    ADS  Article  Google Scholar 

  30. Scully, M. O. Single photon subradiance: quantum control of spontaneous emission and ultrafast readout. Phys. Rev. Lett. 115, 243602 (2015).

    ADS  Article  Google Scholar 

  31. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    ADS  Article  Google Scholar 

  32. Song, C. et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017).

    ADS  Article  Google Scholar 

  33. Kyriienko, O. & Sorensen, A. S. Floquet quantum simulation with superconducting qubits. Phys. Rev. Appl. 9, 064029 (2018).

    ADS  Article  Google Scholar 

  34. Wu, Y. et al. An efficient and compact switch for quantum circuits. npj Quantum Inf. 4, 50 (2018).

    ADS  Article  Google Scholar 

  35. Koch, J., Houck, A. A., Hur, K. L. & Girvin, S. M. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

    ADS  Article  Google Scholar 

  36. Otfried, G. & Seevinck, M. Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank W. Liu, Q. Guo and K. Huang for technical support. This research was supported by the National Key Research and Development Program of China (grants nos. 2018YFA0307200, 2017YFA0304202 and 2016YFA0300601), the National Natural Science Foundations of China (grants nos. 11434008, 11574380, 11725419 and 11874322) and the Fundamental Research Funds for the Central Universities of China (grant no. 2016XZZX002-01). D.W.W. was also supported by the key research programme of the Chinese Academy of Sciences (grant no. XDPB08-3). M.O.S. was supported by the Air Force Office of Scientific Research (award no. FA9550-18-1-0141), the Office of Naval Research (award no. N00014-16-1-3054) and the Robert A. Welch Foundation (grant no. A-1261). Devices were made at the Nanofabrication Facilities at the Institute of Physics in Beijing, the University of Science and Technology of China in Hefei and the National Center for Nanoscience and Technology in Beijing.

Author information

Authors and Affiliations

Authors

Contributions

D.W.W. conceived the idea and formulated the theory. D.W.W. and H.W. planned the project. C.S. performed the experiments. W.F., H.C. and C.S. carried out the simulation and analysed the data. H.D., H.L., D.Z. and X.Z. fabricated the sample with designs and support from H.W.’s group. D.X. provided technical support. D.W.W., W.F. and H.W. wrote the paper and S.Y.Z. and M.O.S. made comments.

Corresponding authors

Correspondence to Da-Wei Wang, Xiaobo Zhu or H. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, DW., Song, C., Feng, W. et al. Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits. Nat. Phys. 15, 382–386 (2019). https://doi.org/10.1038/s41567-018-0400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0400-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing