Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signatures of the many-body localized regime in two dimensions

Abstract

Lessons from Anderson localization highlight the importance of the dimensionality of real space for localization due to disorder. More recently, studies of many-body localization have focused on the phenomenon in one dimension using techniques of exact diagonalization and tensor networks. On the other hand, experiments in two dimensions have provided concrete results going beyond the previously numerically accessible limits while posing several challenging questions. We present the large-scale numerical examination of a disordered Bose–Hubbard model in two dimensions realized in cold atoms, which shows entanglement-based signatures of many-body localization. By generalizing a low-depth quantum circuit to two dimensions, we approximate eigenstates in the experimental parameter regimes for large systems, which is beyond the scope of exact diagonalization. A careful analysis of the eigenstate entanglement structure provides an indication of the putative phase transition marked by a peak in the fluctuations of entanglement entropy in a parameter range consistent with experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum circuits in the diagrammatic representation of tensor networks.
Fig. 2: Benchmark calculations for a 4 × 4 system.
Fig. 3: Entropy and on-site occupation distributions.
Fig. 4: Variance of the entropy as a function of Δ for 30 disorder realizations.
Fig. 5: Mobility edges obtained as explained in the main text.
Fig. 6: Dependence of correlation length ξ on disorder strength Δ for nmax = 1.

Similar content being viewed by others

Data availability

The data that support the plots within this article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  ADS  Google Scholar 

  3. Gornyi, I., Mirlin, A. & Polyakov, D. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    Article  ADS  Google Scholar 

  4. Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).

    Article  ADS  Google Scholar 

  5. Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    Article  ADS  Google Scholar 

  6. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article  ADS  Google Scholar 

  7. Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

    Article  ADS  Google Scholar 

  8. Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).

    Article  ADS  Google Scholar 

  9. Pekker, D., Refael, G., Altman, E., Demler, E. & Oganesyan, V. Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 4, 011052 (2014).

    Google Scholar 

  10. Bahri, Y., Vosk, R., Altman, E. & Vishwanath, A. Localization and topology protected quantum coherence at the edge of hot matter. Nat. Commun. 6, 7341 (2015).

    Article  Google Scholar 

  11. Chandran, A., Khemani, V., Laumann, C. R. & Sondhi, S. L. Many-body localization and symmetry-protected topological order. Phys. Rev. B 89, 144201 (2014).

    Article  ADS  Google Scholar 

  12. Kjäll, J. A., Bardarson, J. H. & Pollmann, F. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204 (2014).

    Article  ADS  Google Scholar 

  13. Vosk, R., Huse, D. A. & Altman, E. Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015).

    Google Scholar 

  14. Potter, A. C., Vasseur, R. & Parameswaran, S. A. Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015).

    Google Scholar 

  15. Chandran, A., Laumann, C. R. & Oganesyan, V. Finite size scaling bounds on many-body localized phase transitions. Preprint at https://arxiv.org/abs/1509.04285 (2015).

  16. Lim, S. P. & Sheng, D. N. Many-body localization and transition by density matrix renormalization group and exact diagonalization studies. Phys. Rev. B 94, 045111 (2016).

    Article  ADS  Google Scholar 

  17. Khemani, V., Lim, S. P., Sheng, D. N. & Huse, D. A. Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013 (2017).

    Google Scholar 

  18. Dumitrescu, P. T., Vasseur, R. & Potter, A. C. Scaling theory of entanglement at the many-body localization transition. Phys. Rev. Lett. 119, 110604 (2017).

    Article  ADS  Google Scholar 

  19. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  ADS  Google Scholar 

  20. Imbrie, J. Z. On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. Chandran, A., Pal, A., Laumann, C. R. & Scardicchio, A. Many-body localization beyond eigenstates in all dimensions. Phys. Rev. B 94, 144203 (2016).

    Article  ADS  Google Scholar 

  23. De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    Article  ADS  Google Scholar 

  24. Roeck, W. D. & Imbrie, J. Z. Many-body localization: stability and instability. Phil. Trans. R. Soc. A 375, 20160422 (2017).

    Article  Google Scholar 

  25. Agarwal, K. et al. Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529, 1600326 (2017).

    Article  MathSciNet  Google Scholar 

  26. Luitz, D. J., Huveneers, F. & De Roeck, W. How a small quantum bath can thermalize long localized chains. Phys. Rev. Lett. 119, 150602 (2017).

    Article  ADS  Google Scholar 

  27. Ponte, P., Laumann, C. R., Huse, D. A. & Chandran, A. Thermal inclusions: how one spin can destroy a many-body localized phase. Phil. Trans. R. Soc. A 375, 20160428 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  28. Potirniche, I.-D., Banerjee, S. & Altman, E. On the stability of many-body localization in d > 1. Preprint at https://arxiv.org/abs/1805.01475 (2018).

  29. Choi, J.-y et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  30. Bordia, P. et al. Probing slow relaxation and many-body localization in two-dimensional quasi-periodic systems. Phys. Rev. X 7, 041047 (2017).

    Google Scholar 

  31. Wahl, T. B., Pal, A. & Simon, S. H. Efficient representation of fully many-body localized systems using tensor networks. Phys. Rev. X 7, 021018 (2017).

    Google Scholar 

  32. Geraedts, S. D., Nandkishore, R. & Regnault, N. Manybody localization and thermalization: insights from the entanglement spectrum. Phys. Rev. B 93, 174202 (2016).

    Article  ADS  Google Scholar 

  33. Inglis, S. & Pollet, L. Accessing many-body localized states through the generalized Gibbs ensemble. Phys. Rev. Lett. 117, 120402 (2016).

    Article  ADS  Google Scholar 

  34. Thomson, S. J. & Schiró, M. Time evolution of many-body localized systems with the flow equation approach. Phys. Rev. B 97, 060201(R) (2018).

    Article  ADS  Google Scholar 

  35. Luitz, D. J., Laorencie, N. & Alet, F. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103 (2015).

    Article  ADS  Google Scholar 

  36. Rubio-Abadal, A. et al. Probing many-body localization in the presence of a quantum bath. Preprint at https://arxiv.org/abs/1805.00056 (2018).

  37. Serbyn, M., Papić, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).

    Article  ADS  Google Scholar 

  38. Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    Article  ADS  Google Scholar 

  39. Ros, V., Mueller, M. & Scardicchio, A. Integrals of motion in the many-body localized phase. Nucl. Phys. B 891, 420–465 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  40. Imbrie, J. Z., Ros, V. & Scardicchio, A. Local integrals of motion in many-body localized systems. Ann. Phys. 529, 1600278 (2017).

    Article  MathSciNet  Google Scholar 

  41. Bauer, B. & Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. 2013, P09005 (2013).

    Article  MathSciNet  Google Scholar 

  42. Pekker, D. & Clark, B. K. Encoding the structure of manybody localization with matrix product operators. Phys. Rev. B 95, 035116 (2017).

    Article  ADS  Google Scholar 

  43. Chandran, A., Carrasquilla, J., Kim, I. H., Abanin, D. A. & Vidal, G. Spectral tensor networks for many-body localization. Phys. Rev. B 92, 024201 (2015).

    Article  ADS  Google Scholar 

  44. Pollmann, F., Khemani, V., Cirac, J. I. & Sondhi, S. L. Efficient variational diagonalization of fully many-body localized Hamiltonians. Phys. Rev. B 94, 041116 (2016).

    Article  ADS  Google Scholar 

  45. Friesdorf, M., Werner, A. H., Brown, W., Scholz, V. B. & Eisert, J. Many-body localization implies that eigenvectors are matrix-product states. Phys. Rev. Lett. 114, 170505 (2015).

    Article  ADS  Google Scholar 

  46. Yu, X., Pekker, D. & Clark, B. K. Finding matrix product state representations of highly excited eigenstates of many-body localized hamiltonians. Phys. Rev. Lett. 118, 017201 (2017).

    Article  ADS  Google Scholar 

  47. Khemani, V., Pollmann, F. & Sondhi, S. L. Obtaining highly excited eigenstates of many-body localized hamiltonians by the density matrix renormalization group approach. Phys. Rev. Lett. 116, 247204 (2016).

    Article  ADS  Google Scholar 

  48. Wahl, T. B. Tensor networks demonstrate the robustness of localization and symmetry protected topological phases. Phys. Rev. B 98, 054204 (2018).

    Article  ADS  Google Scholar 

  49. Kulshreshtha, A., Pal, A., Wahl, T. B. & Simon, S. H. Behavior of l-bits near the many-body localization transition. Preprint at https://arxiv.org/abs/1707.05362 (2018).

  50. Yu, X., Luitz, D. J. & Clark, B. K. Bimodal entanglement entropy distribution in the many-body localization transition. Phys. Rev. B 94, 184202 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Chandran and C. Laumann for stimulating discussions and a careful reading of the manuscript, and A. Abadal, I. Bloch, J.-Y. Choi and C. Gross for detailed discussions related to the experiments. The authors also thank D. Huse, J. Imbrie, V. Oganesyan, W. De Roeck, A. Scardicchio, S. Sondhi and T. Spencer for fruitful discussions. S.H.S. and T.B.W. are both supported by TOPNES (EPSRC grant no. EP/I031014/1). S.H.S. is also supported by EPSRC grant no. EP/N01930X/1. T.B.W. acknowledges use of the University of Oxford Advanced Research Computing (ARC) facility in carrying out this work (https://doi.org/10.5281/zenodo.22558). A.P. is supported by the Glasstone Fellowship and thanks the Aspen Center for Physics, which is supported by National Science Foundation grant no. PHY-1607611, and the Simons Center for Geometry and Physics, Stonybrook University, for their hospitality, where part of this work was performed. T.B.W. is grateful for support by the European Commission under the Marie Curie Programme. Statement of compliance with EPSRC policy framework on research data: this publication is theoretical work that does not require supporting research data.

Author information

Authors and Affiliations

Authors

Contributions

T.B.W. performed all the numerical simulations. The theoretical analysis and writing of the manuscript were jointly performed by A.P., T.B.W. and S.H.S.

Corresponding author

Correspondence to Arijeet Pal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahl, T.B., Pal, A. & Simon, S.H. Signatures of the many-body localized regime in two dimensions. Nature Phys 15, 164–169 (2019). https://doi.org/10.1038/s41567-018-0339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0339-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing