Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic variation of parity violation in atomic ytterbium

Abstract

The weak force is the only fundamental interaction known to violate the symmetry with respect to spatial inversion (parity). This parity violation can be used to isolate the effects of the weak interaction in atomic systems, providing a unique, low-energy test of the standard model (see, for example, reviews1,2,3). These experiments are primarily sensitive to the weak force between the valence electrons and the nucleus, mediated by the neutral Z0 boson and dependent on the weak charge of the nucleus, Qw. The standard model parameter Qw was most precisely determined in caesium4,5 and has provided a stringent test of the standard model at low energy. The standard model also predicts a variation of Qw with the number of neutrons in the nucleus, an effect whose direct observation we are reporting here. Our studies, made on a chain of ytterbium isotopes, provide a measurement of isotopic variation in atomic parity violation, confirm the predicted standard model Qw scaling and offer information about an additional Z′ boson.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy-level diagram of Yb with relevant optical transitions.
Fig. 2: Schematic of the Yb atomic-beam apparatus.
Fig. 3: Isotopic variation of the PV effect and bounds on Z′ boson-mediated interactions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ginges, J. S. M. & Flambaum, V. V. Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles. Phys. Rep. 397, 63–154 (2004).

    Article  ADS  Google Scholar 

  2. Roberts, B. M., Dzuba, V. A. & Flambaum, V. V. Parity and time-reversal violation in atomic systems. Annu. Rev. Nucl. Part. Sci. 65, 63–86 (2015).

    Article  ADS  Google Scholar 

  3. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. Wood, C. S. et al. Measurement of parity nonconservation and an anapole moment in cesium. Science 275, 1759–1763 (1997).

    Article  Google Scholar 

  5. Dzuba, V. A., Berengut, J. C., Flambaum, V. V. & Roberts, B. Revisiting parity nonconservation in cesium. Phys. Rev. Lett. 109, 203003 (2012).

    Article  ADS  Google Scholar 

  6. DeMille, D. Parity nonconservation in the 6s2 1S0→5d6s 3D1 transition in atomic ytterbium. Phys. Rev. Lett. 74, 4165–4168 (1995).

    Article  ADS  Google Scholar 

  7. Porsev, S. G., Rakhlina, Yu. G. & Kozlov, M. G. Parity violation in atomic ytterbium. J. Exp. Theor. Phys. Lett. 61, 459–463 (1995).

    Google Scholar 

  8. Das, B. P. Computation of correlation effects on the parity-nonconserving electric-dipole transition in atomic ytterbium. Phys. Rev. A 56, 1635–1637 (1997).

    Article  ADS  Google Scholar 

  9. Dzuba, V. A. & Flambaum, V. V. Calculation of parity nonconservation in neutral ytterbium. Phys. Rev. A. 83, 042514 (2011).

    Article  ADS  Google Scholar 

  10. Tsigutkin, K. et al. Observation of a large atomic parity violation effect in ytterbium. Phys. Rev. Lett. 103, 071601 (2009).

    Article  ADS  Google Scholar 

  11. Tsigutkin, K. et al. Parity violation in atomic ytterbium: Experimental sensitivity and systematics. Phys. Rev. A. 81, 032114 (2010).

    Article  ADS  Google Scholar 

  12. Dzuba, V. A., Flambaum, V. V. & Khriplovich, I. B. Enhancement of P- and T-nonconserving effects in rare-earth atoms. Z. Phys. D 1, 243–245 (1986).

    Article  ADS  Google Scholar 

  13. Fortson, E. N., Pang, Y. & Wilets, L. Nuclear-structure effects in atomic parity nonconservation. Phys. Rev. Lett. 65, 2857–2860 (1990).

    Article  ADS  Google Scholar 

  14. Brown, B. A., Derevianko, A. & Flambaum, V. V. Calculations of the neutron skin and its effect in atomic parity violation. Phys. Rev. C 79, 035501 (2009).

    Article  ADS  Google Scholar 

  15. Dzuba, V. A., Flambaum, V. V. & Stadnik, Y. V. Probing low-mass vector bosons with parity nonconservation and nuclear anapole moment measurements in atoms and molecules. Phys. Rev. Lett. 119, 223201 (2017).

    Article  ADS  Google Scholar 

  16. Flambaum, V. V. & Khriplovich, I. B. P-odd nuclear forces: a source of parity violation in atoms. ZhETF 79, 1656–1663 (1980); JETP 52, 835-839 (1980).

    Google Scholar 

  17. Flambaum, V. V., Khriplovich, I. B. & Sushkov, O. P. Nuclear anapole moments. Phys. Lett. B 146, 367–369 (1984).

    Article  ADS  Google Scholar 

  18. Haxton, W. C. & Wieman, C. E. Atomic parity nonconservation and nuclear anapole moments. Annual Rev. Nucl. Part. Sci. 51, 261–293 (2001).

    Article  ADS  Google Scholar 

  19. Bouchiat, M. A. & Pottier, L. Optical experiments and weak interactions. Science 234, 1203–1210 (1986).

    Article  ADS  Google Scholar 

  20. Bouchiat, M. A. & Bouchiat, C. Parity violation induced by weak neutral currents in atomic physics. J. Phys. France II 36, 493–509 (1975).

    Article  Google Scholar 

  21. Drell, P. S. & Commins, E. D. Parity nonconservation in atomic thallium. Phys. Rev. Lett. 53, 968–971 (1984).

    Article  ADS  Google Scholar 

  22. Antypas, D., Fabricant, A., Bougas, L., Tsigutkin, K. & Budker, D. Towards improved measurements of parity violation in atomic ytterbium. Hyperfine Interact. 238, 21 (2017).

    Article  ADS  Google Scholar 

  23. Bouchiat, M. A., Coblentz, A., Guéna, J. & Pottier, L. Can imperfect light polarization mimic parity violation in Stark experiments on forbidden M1 transitions? J. Phys. France 42, 985–990 (1981).

    Article  Google Scholar 

  24. Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  25. Heckel, B. R. et al. New CP-violation and preferred-frame tests with polarized electrons. Phys. Rev. Lett. 97, 021603 (2006).

    Article  ADS  Google Scholar 

  26. Heckel, B. R. et al. Preferred-frame and CP-violation tests with polarized electrons. Phys. Rev. D 78, 092006 (2008).

    Article  ADS  Google Scholar 

  27. Vasilakis, G., Brown, J. M., Kornack, T. W. & Romalis, M. V. Limits on new long range nuclear spin-dependent forces set with a K–3He comagnetometer. Phys. Rev. Lett. 103, 261801 (2009).

    Article  ADS  Google Scholar 

  28. Stalnaker, J. E. et al. Dynamic Stark effect and forbidden-transition spectral line shapes. Phys. Rev. A 73, 043416 (2006).

    Article  ADS  Google Scholar 

  29. Dounas-Frazer, D. R., Tsigutkin, K., Family, A. & Budker, D. Measurement of dynamic Stark polarizabilities by analyzing spectral lineshapes of forbidden transitions. Phys. Rev. A. 82, 062507 (2010).

    Article  ADS  Google Scholar 

  30. Antypas, D., Fabricant, A. & Budker, D. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field. Opt. Lett. 43, 2241–2243 (2018).

    Article  ADS  Google Scholar 

  31. Tsigutkin, K. et al. in From Parity Violation to Hadronic Structure and more (eds de Jager, K. et al) 177–183 (Springer, Berlin, Heidelberg, 2007).

  32. Androić, D. et al. (The Jefferson Lab Qweak Collaboration) Precision measurement of the weak charge of the proton. Nature 557, 207–211 (2018).

  33. Stalnaker, J. E., Budker, D., DeMille, D. P., Friedman, S. J. & Yashchuk, V. V. Measurement of the forbidden 6s 2 1S0→5d6s 3D1 magnetic-dipole transition amplitude in atomic ytterbium. Phys. Rev. A. 66, 031403 (2002).

    Article  ADS  Google Scholar 

  34. Budker, D. & Stalnaker, J. E. Magnetoelectric Jones dichroism in atoms. Phys. Rev. Lett. 91, 263901 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Safronova, M. Kozlov, S. Porsev, M. Zolotorev, A. Viatkina, L. Bougas and N. Leefer for useful discussions. A.F. is supported by the Carl Zeiss Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.A. built the apparatus, collected and analysed data, and wrote the manuscript. A.F. contributed to the apparatus construction, took data and edited the manuscript. J.E.S. participated in studies of systematic errors, contributed to data analysis and edited the manuscript. K.T. participated in studies of systematics and data analysis. V.V.F. led the analysis of data to extract limits on Z´ boson-mediated interactions. D.B. supervised the project and edited the manuscript.

Corresponding author

Correspondence to D. Antypas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figure 1 and Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antypas, D., Fabricant, A., Stalnaker, J.E. et al. Isotopic variation of parity violation in atomic ytterbium. Nature Phys 15, 120–123 (2019). https://doi.org/10.1038/s41567-018-0312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0312-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing