Letter | Published:

Spin pumping from nuclear spin waves

Nature Physicsvolume 15pages2226 (2019) | Download Citation


Various spintronic phenomena originate from the exchange of angular momentum between the spin of electrons and other degrees of freedom in crystalline materials. Many degrees of freedom, such as magnetization1 and mechanical motion2, have already been united into this exchange framework. However, the nuclear spin—a key angular momentum—has yet to be incorporated. Here we observe spin pumping from nuclear magnetic resonance (NMR), in which nuclear spin dynamics emits a spin current, a flow of spin angular momentum of electrons. By using the canted antiferromagnet MnCO3, in which typical nuclear spin-wave formation is established due to the reinforced hyperfine coupling, we find that a spin current is generated from an NMR. Nuclear spins are indispensable for quantum information technology3 and are also frequently used in various sensors, such as in magnetic resonance imaging4. The observed NMR spin pumping allows spin-current generation from nuclei and will enable spintronic detection of nuclear spin states.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Maekawa, S., Valenzuela, S. O., Saitoh, E., Kimura, T. (eds) Spin Current (Oxford Univ. Press, Oxford, 2012).

  2. 2.

    Matsuo, M., Saitoh, E. & Maekawa, S. Spin-mechatronics. J. Phys. Soc. Jpn. 86, 011011 (2017).

  3. 3.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, Cambridge, 2010).

  4. 4.

    McRobbie, D. W., Moore, E. A., Graves, M. J. & Prince, M. R. MRI from Picture to Proton (Cambridge Univ. Press, Cambridge, 2007).

  5. 5.

    Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

  6. 6.

    Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin Permalloy layer in Cu/Permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

  7. 7.

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

  8. 8.

    Azevedo, A., Vilela Leão, L. H., Rodríguez-Suárez, R. L., Oliveira, A. B. & Rezende, S. M. dc effect in ferromagnetic resonance: Evidence of the spin-pumping effect? J. Appl. Phys. 97, 10C715 (2005).

  9. 9.

    Costache, M. V., Sladkov, M., Watts, S. M., van der Wal, C. H. & van Wees, B. J. Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006).

  10. 10.

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

  11. 11.

    Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281–286 (2002).

  12. 12.

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

  13. 13.

    Suhl, H. Effective nuclear spin interactions in ferromagnets. Phys. Rev. 109, 606 (1958).

  14. 14.

    Nakamura, T. Indirect coupling of nuclear spins in antiferromagnet with particular reference to MnF2 at very low temperatures. Prog. Theor. Phys. 20, 542–552 (1958).

  15. 15.

    de Gennes, P. G., Pincus, P. A., Harmann-Boutron, F. & Winter, J. M. Nuclear magnetic resonance modes in magnetic material. I. Theory. Phys. Rev. 129, 1105–1115 (1963).

  16. 16.

    Tulin, V. A. Nuclear spin waves in magnetically ordered materials. Sov. J. Low. Temp. Phys. 5, 455–469 (1979).

  17. 17.

    Borovik-Romanov, A. S. et al. The spin echo in systems with a coupled electron–nuclear precession. Sov. Phys. Usp. 27, 235–255 (1984).

  18. 18.

    Andrienko, A. V., Ozhogin, V. I., Safonov, V. L. & Yakubovskiǐ, A. Yu Nuclear spin wave research. Sov. Phys. Usp. 34, 843–861 (1991).

  19. 19.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

  20. 20.

    Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

  21. 21.

    Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

  22. 22.

    Andrienko, A. V., Ozhogin, V. I., Safonov, V. L. & Yakubovskiǐ, A. Yu Influence of electronic-magnon relaxation rate on the damping of nuclear spin waves in antiferromagnets. Sov. Phys. JETP 62, 794–799 (1985).

  23. 23.

    Borovik-Romanov, A. S. & Orlova, M. P. Magnetic properties of cobalt and manganese carbonates. Sov. Phys. JETP 4, 531–534 (1957).

  24. 24.

    Borovik-Romanov, A. S. Investigation of weak ferromagnetism in the MnCO3 single crystal. Sov. Phys. JETP 9, 539–549 (1959).

  25. 25.

    Shaltiel, D. Nuclear magnetic resonance of MnCO3 in the canted spin state. Phys. Rev. 142, 300–306 (1966).

  26. 26.

    Tateishi, K. et al. Room temperature hyperpolarization of nuclear spins in bulk. Proc. Natl. Acad. Sci. USA 111, 7527–7530 (2014).

  27. 27.

    Gregg, J. F. et al. Microscopic explanation of microwave spin pumping in spintronics. Preprint at https://arxiv.org/abs/1711.06048 (2017).

  28. 28.

    Vagner, I. D. Recent Trends in Theory of Physical Phenomena in High Magnetic Fields Ch. 23 (Springer, Dordrecht, 2003).

Download references


We thank H. Yasuoka, S. Maekawa, M. Matsuo, H. Chudo, K. Harii and M. Imai for fruitful discussions. This research was supported by JST ERATO ‘Spin Quantum Rectification Project’ (JPMJER1402), JSPS KAKENHI (no. 17H04806, no. JP18H04215, no. 18H04311, no. JP16J03699 and no. 17H02927) and MEXT (Innovative Area ‘Nano Spin Conversion Science’ (no. 26103005)).

Author information

Author notes

    • Yuki Shiomi

    Present address: Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, Japan

  1. These authors contributed equally: Yuki Shiomi and Jana Lustikova.


  1. Institute for Materials Research, Tohoku University, Sendai, Japan

    • Yuki Shiomi
    • , Jana Lustikova
    • , Shingo Watanabe
    • , Daichi Hirobe
    • , Saburo Takahashi
    •  & Eiji Saitoh
  2. Center for Spintronics Research Network, Tohoku University, Sendai, Japan

    • Saburo Takahashi
    •  & Eiji Saitoh
  3. Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan

    • Eiji Saitoh
  4. Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

    • Eiji Saitoh
  5. RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan

    • Yuki Shiomi


  1. Search for Yuki Shiomi in:

  2. Search for Jana Lustikova in:

  3. Search for Shingo Watanabe in:

  4. Search for Daichi Hirobe in:

  5. Search for Saburo Takahashi in:

  6. Search for Eiji Saitoh in:


S.W. conceived the experiments in discussions with Y.S. and D.H. Y.S., J.L. and S.W. constructed the experimental set-up, performed the experiments, and analysed the experimental data. S.T. conducted the theoretical calculations. Y.S., J.L., S.W. and E.S. wrote the manuscript. E.S. supervised the project. All authors discussed the results and reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Yuki Shiomi or Eiji Saitoh.

Supplementary information

  1. Supplementary Information

    Theoretical calculations; Supplementary Figures 1–8; Supplementary References 1–8

About this article

Publication history






Further reading