Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Building the building blocks

Large-scale quantum computations are hampered by the propagation of errors. Experiments have now demonstrated the deterministic teleportation of a quantum gate, which prevents error propagation by using a combination of quantum and classical bits.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quantum computing architecture concepts.


  1. 1.

    Chou, K. S. et al. Nature (2018).

    Article  Google Scholar 

  2. 2.

    Mohseni, M. et al. Nature 543, 171–174 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Nat. Phys. 14, 321 (2018).

  4. 4.

    Gomes, L. IEEE Spectrum (2018).

  5. 5.

    Preskill, J. Preprint at (1997).

  6. 6.

    Gottesman, D. & Chuang, I. L. Nature 402, 390–393 (1999).

    ADS  Article  Google Scholar 

  7. 7.

    Fitzsimons, J. F. npj Quant. Inf. 3, 23 (2017).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Isaac Chuang.

Ethics declarations

Competing interests

Isaac Chuang serves on the scientific advisory board of Quantum Circuits, Inc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chuang, I. Building the building blocks. Nature Phys 14, 974–975 (2018).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing