Perspective | Published:

Unscrambling the physics of out-of-time-order correlators

Nature Physicsvolume 14pages988990 (2018) | Download Citation

Quantitative tools for measuring the propagation of information through quantum many-body systems, originally developed to study quantum chaos, have recently found many new applications from black holes to disordered spin systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).

  2. 2.

    Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

  3. 3.

    Peres, A. Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610–1615 (1984).

  4. 4.

    Jalabert, R. A. & Pastawski, H. M. Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490–2493 (2001).

  5. 5.

    Gorin, T., Prosen, T., Seligman, T. H. & Žnidarič, M. Dynamics of Loschmidt echoes and delity decay. Phys. Rep. 435, 33–156 (2006).

  6. 6.

    Rhim, W.-K., Pines, A. & Waugh, J. S. Time-reversal experiments in dipolar-coupled spin systems. Phys. Rev. B 3, 684–696 (1971).

  7. 7.

    Zhang, S., Meier, B. H. & Ernst, R. R. Polarization echoes in NMR. Phys. Rev. Lett. 69, 2149–2151 (1992).

  8. 8.

    Levstein, P. R., Usaj, G. & Pastawski, H. M. Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys. 108, 2718–2724 (1998).

  9. 9.

    Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).

  10. 10.

    Yao, N. Y. et al. Interferometric approach to probing fast scrambling. Preprint at https://arxiv.org/abs/1607.01801 (2016).

  11. 11.

    Zhu, G., Hafezi, M. & Grover, T. Measurement of many-body chaos using a quantum clock. Phys. Rev. A 94, 062329 (2016).

  12. 12.

    Campisi, M. & Goold, J. Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017).

  13. 13.

    Yunger Halpern, N. Jarzynski-like equality for the out-of-time-ordered correlator. Phys. Rev. A 95, 012120 (2017).

  14. 14.

    Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).

  15. 15.

    Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7, 031011 (2017).

  16. 16.

    Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018).

  17. 17.

    Meier, E. J., Ang’ong’a, J., An, F. A. & Gadway, B. Exploring quantum signatures of chaos on a Floquet synthetic lattice. Preprint at https://arxiv.org/abs/1705.06714 (2017).

  18. 18.

    Roberts, D. A. & Swingle, B. Lieb-Robinson bound and the butterfly effect in quantum field theories. Phys. Rev. Lett. 117, 091602 (2016).

  19. 19.

    Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).

  20. 20.

    Kitaev, A. A simple model of quantum holography. KITP http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).

  21. 21.

    Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

  22. 22.

    Sachdev, S. & Ye, J. Gapless spin-liquid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

  23. 23.

    Polchinski, J. & Rosenhaus, V. The spectrum in the Sachdev-Ye-Kitaev model. J. High Energy Phys. 2016, 1 (2016).

  24. 24.

    Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).

  25. 25.

    Kukuljan, I., Grozdanov, S. & Prosen, T. Weak quantum chaos. Phys. Rev. B 96, 060301 (2017).

  26. 26.

    Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007).

  27. 27.

    Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energy Phys. 2016, 4 (2016).

  28. 28.

    Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).

  29. 29.

    Yoshida, B. & Kitaev, A. Efficient decoding for the Hayden-Preskill protocol. Preprint at https://arxiv.org/abs/1710.03363 (2017).

  30. 30.

    Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energy Phys. 2017, 151 (2017).

  31. 31.

    Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

  32. 32.

    Serbyn, M., Papic, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).

  33. 33.

    Huang, Y., Zhang, Y.-L. & Chen, X. Out-of-time-ordered correlator in many-body localized systems. Ann. Phys. 529, 1600318 (2017).

  34. 34.

    Fan, R., Zhang, P., Shen, H. & Zhai, H. Out-of-time-order correlation for many-body localization. Sci. Bull. 62, 707–711 (2017).

  35. 35.

    Swingle, B. & Chowdhury, D. Slow scrambling in disordered quantum systems. Phys. Rev. B 95, 060201 (2017).

  36. 36.

    Chen, Y. Quantum logarithmic butterfly in many body localization. Preprint at https://arxiv.org/abs/1608.02765 (2016).

  37. 37.

    Slagle, K., Bi, Z., You, Y.-Z. & Xu, C. Out-of-time-order correlation in marginal many-body localized systems. Phys. Rev. B 95, 165136 (2017).

  38. 38.

    Yunger Halpern, N., Swingle, B. & Dressel, J. The quasiprobability behind the out-of-time-ordered correlator. Phys. Rev. A 97, 042105 (2018).

  39. 39.

    Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

Download references

Author information

Affiliations

  1. Condensed Matter Theory Center, Maryland Center for Fundamental Physics, Joint Center for Quantum Information and Computer Science, and Department of Physics, University of Maryland, College Park, MD, USA

    • Brian Swingle
  2. Kavli Institute for Theoretical Physics, Santa Barbara, CA, USA

    • Brian Swingle

Authors

  1. Search for Brian Swingle in:

Corresponding author

Correspondence to Brian Swingle.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0295-5