Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced high-harmonic generation from an all-dielectric metasurface


The recent observation of high-harmonic generation from solids creates a new possibility for engineering fundamental strong-field processes by patterning the solid target with subwavelength nanostructures. All-dielectric metasurfaces exhibit high damage thresholds and strong enhancement of the driving field, making them attractive platforms to control high harmonics and other high-field processes at the nanoscale. Here we report enhanced non-perturbative high-harmonic emission from a Fano-resonant Si metasurface that possesses a classical analogue of electromagnetically induced transparency. The harmonic emission is enhanced by more than two orders of magnitude compared to unpatterned samples. The enhanced high harmonics are highly anisotropic with respect to the excitation polarization and are selective by the excitation wavelength due to its resonant features. By combining nanofabrication technology and ultrafast strong-field physics, our work paves the way for the design of new compact ultrafast photonic devices that operate under high intensities and at short wavelengths.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Working principle of the metasurface and resonance characterization.
Fig. 2: High-harmonic spectra from a Si metasurface.
Fig. 3: Dependence of non-perturbative high-harmonic yield on excitation intensity.
Fig. 4: Dependence of the high-harmonic spectra on the excitation wavelength.


  1. 1.

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  2. 2.

    Vampa, G., Fattahi, H., Vučković, J. & Krausz, F. Nonlinear optics: Attosecond nanophotonics. Nat. Photon. 11, 210–212 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  4. 4.

    Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2016).

    Article  Google Scholar 

  10. 10.

    You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article  Google Scholar 

  11. 11.

    Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Vampa, G. et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 13, 659–662 (2017).

    Article  Google Scholar 

  13. 13.

    Han, S. et al. High-harmonic generation by field enhanced femtosecond pulses in metal–sapphire nanostructure. Nat. Commun. 7, 13105 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Liu, S. et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Stockman, M. I. Nanoplasmonics: The physics behind the applications. Phys. Today 64, 39–44 (February, 2011).

  19. 19.

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Boller, K., Imamolu, A. & Harris, S. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    ADS  Article  Google Scholar 

  21. 21.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  22. 22.

    Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Pfullmann, N. et al. Nano-antenna-assisted harmonic generation. Appl. Phys. B 113, 75–79 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: A paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2017).

    Article  Google Scholar 

  28. 28.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  29. 29.

    Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Article  Google Scholar 

  32. 32.

    Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

    Article  Google Scholar 

  33. 33.

    Sandhu, S., Povinelli, M. L. & Fan, S. Enhancing optical switching with coherent control. Appl. Phys. Lett. 96, 3–5 (2010).

    Article  Google Scholar 

  34. 34.

    Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607–612 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    ADS  MathSciNet  Article  Google Scholar 

Download references


This project was supported primarily by the Air Force Office of Scientific Research under grant no. FA9550-14-1-0108. We thank S.Ghimire and J.Lu for technical support.

Author information




H.L. and C.G. contributed equally to this work. H.L. conceived the experiment. C.G. and M.X. performed FDTD simulations. H.L. and J.L.Z. fabricated the device. H.L. and G.V. performed the HHG measurement under the supervision of D.A.R. H.L., C.G, T.S., and J.L.Z. characterized the resonance. All authors contributed to the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Hanzhe Liu or David A. Reis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

5 pages, 2 figures, 2 references

Supplementary Movie

11:24 min duration

Supplementary Movie

13:49 min duration

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Guo, C., Vampa, G. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nature Phys 14, 1006–1010 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing