Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy

Abstract

The standard model of cosmology provides a robust description of the evolution of the Universe. Nevertheless, the small magnitude of the vacuum energy is troubling from a theoretical point of view9. An appealing resolution to this problem is to introduce additional scalar fields. However, these have so far escaped experimental detection, suggesting some kind of screening mechanism may be at play. Although extensive exclusion regions in parameter space have been established for one screening candidate—chameleon fields10,17—another natural screening mechanism based on spontaneous symmetry breaking has also been proposed, in the form of symmetrons11. Such fields would change the energy of quantum states of ultracold neutrons in the gravitational potential of the Earth. Here, we demonstrate a spectroscopic approach based on the Rabi resonance method that probes these quantum states with a resolution of ΔE =2 × 10−15 eV. This allows us to exclude the symmetron as the origin of dark energy for a large volume of the three-dimensional parameter space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic views of the experimental set-up.
Fig. 2: Observed transition rates for the local gravitational acceleration measurement.
Fig. 3: Qualitative sketch of the effective symmetron potential.
Fig. 4: Laboratory measurements constrain a large parameter range for the symmetron fields.

References

  1. 1.

    Rabi, I. I., Millman, S., Kusch, P. & Zacharias, J. R. The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of 3Li6, 3Li7 and 9F19. Phys. Rev. 55, 526–535 (1939).

    ADS  Article  Google Scholar 

  2. 2.

    Jenke, T., Lemmel, H., Geltenbort, P. & Abele, H. Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 7, 468–472 (2011).

    Article  Google Scholar 

  3. 3.

    Jenke, T. et al. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Westphal, A. et al. A quantum mechanical description of the experiment on the observation of gravitationally bound states. Eur. Phys. J. C 51, 367–375 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Abele, H., Jenke, T., Leeb, H. & Schmiedmayer, J. Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts. Phys. Rev. D 81, 065019 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Roulier, D. et al. Status of the GRANIT facility Adv. High. Energy Phys. 2015, 730437 (2015).

  7. 7.

    Cronenberg, G. Frequency Measurements Testing Newton’s Gravity Law with the Rabi-qBounce experiment. PhD thesis, Technische Universität Wien (2016).

  8. 8.

    Weber, M. Gravitation in der Interferometrie mit Kalten Neutronen. PhD thesis, University of Innsbruck (1998).

  9. 9.

    Joyce, A., Jain, B., Khoury, J. & Trodden, M. Beyond the cosmological standard model. Phys. Rep. 568, 1–98 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

    ADS  Article  Google Scholar 

  11. 11.

    Hinterbichler, K. & Khoury, J. Screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104, 231301 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    Hinterbichler, K., Khoury, J., Levy, A. & Matas, A. Symmetron cosmology. Phys. Rev. D 84, 103521 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Pietroni, M. Dark energy condensation. Phys. Rev. D 72, 043535 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    Olive, K. A. & Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 043524 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Brax, P. & Davis, A. C. Atomic interferometry test of dark energy. Phys. Rev. D 94, 104069 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Burrage, C., Kuribayashi-Coleman, A., Stevenson, J. & Thrussell, B. Constraining symmetron fields with atom interferometry. JCAP 1612, 041 (2016).

    Article  Google Scholar 

  17. 17.

    Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 13, 938–942 (2017).

    Article  Google Scholar 

  18. 18.

    Brax, P. & Burrage, C. Atomic precision tests and light scalar couplings. Phys. Rev. D 83, 035020 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Brax, P. & Pitschmann, M. Exact solutions to nonlinear symmetron theory: one- and two-mirror systems. Phys. Rev. D 97, 064015 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Brax, P., Burrage, C., Englert, C. & Spannowsky, M. LHC signatures of scalar dark energy. Phys. Rev. D 94, 084054 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Kapner, D. J. et al. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Gea-Banacloche, J. A quantum-bouncing ball. Am. J. Phys. 67, 776–782 (1999).

    ADS  Article  Google Scholar 

  23. 23.

    Wallis, H., Dalibard, J. & Cohen-Tannoudji, C. Trapping atoms in a gravitational cavity. Appl. Phys. B 54, 407–419 (1992).

    ADS  Article  Google Scholar 

  24. 24.

    Jenke, T. et al. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Nesvizhevsky, V. V. et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002).

    ADS  Article  Google Scholar 

  26. 26.

    Baessler, S. et al. Frequency shifts in gravitational resonance spectroscopy. Phys. Rev. D 91, 042006 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

H.A. thanks M. Faber and A. Ivanov for useful discussions. We gratefully acknowledge support from the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) under contract no. I529-N20, no. 531-N20 and no. I862-N20, and the German Research Foundation (DFG) as part of the Priority Programme (SPP) 1491 “Precision experiments in particle and astrophysics with cold and ultra-cold neutrons”. We also gratefully acknowledge support from the French L’Agence nationale de la recherche (ANR) under contract no. ANR-2011-ISO4-007-02, Programme Blanc International—SIMI4-Physique. This work is supported in part by the EU Horizon 2020 research and innovation programme under the Marie-Sklodowska grant no. 690575. This article is based upon work related to the COST Action CA15117 (CANTATA) supported by COST (European Cooperation in Science and Technology).

Author information

Affiliations

Authors

Contributions

G.C., H.F., P.G., M.T., T.J. and H.A. performed the experiment. G.C., T.J., M.P., H.F. and H.A. analysed the data. M.P., G.P. and P.B. provided the theoretical contributions. All authors contributed to the manuscript.

Corresponding author

Correspondence to Hartmut Abele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Notes 1–2, Supplementary Figure 1, Supplementary Table 1, Supplementary References 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cronenberg, G., Brax, P., Filter, H. et al. Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy. Nature Phys 14, 1022–1026 (2018). https://doi.org/10.1038/s41567-018-0205-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing