Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene

An Author Correction to this article was published on 29 October 2018

This article has been updated

Abstract

In monolayer graphene, the two inequivalent sublattices of carbon atoms combine with the electron spin to give electrons a nearly fourfold degenerate internal isospin. At high magnetic fields, the isospin degeneracy increases the already large intrinsic degeneracy of the two-dimensional Landau levels, making low-disorder graphene systems a versatile platform for studying multicomponent quantum magnetism. Here, we describe magnetocapacitance experiments of ultraclean monolayer graphene devices in which a hexagonal boron nitride substrate breaks the symmetry between carbon sublattices. We observe a phase transition in the isospin system, which is marked by unusual transitions in odd-denominator fractional quantum Hall states for filling factors ν near charge neutrality and by the unexpected appearance of incompressible even-denominator fractional quantum Hall states at ν = ±1/2 and ν = ±1/4. We propose a scenario in which the observed states are multicomponent fractional quantum Hall states incorporating correlations between electrons on different carbon sublattices, associated with a quantum Hall analogue of the Néel-to-valence bond solid transition that occurs at charge neutrality.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Incompressible FQH states at ν = ±1/2.
Fig. 2: Incompressible FQH states at ν = ±1/4.
Fig. 3: Odd-denominator fractional quantum Hall phase transitions associated with the ν = −1/2 state.
Fig. 4: Low-B data and mean field phase diagram of the ν = 0 state.
Fig. 5: Sublattice level crossing and multicomponent ν = ±1/2 states within a simplified model.

Change history

  • 29 October 2018

    In the version of this Article originally published, the sketch of ‘PSP’ in Fig. 1a was incorrect; it has now been replaced. Please see the correction note to compare the original and corrected figure.

References

  1. Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    ADS  Article  Google Scholar 

  2. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    ADS  Article  Google Scholar 

  3. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    ADS  Article  Google Scholar 

  4. Herbut, I. F. Theory of integer quantum Hall effect in graphene. Phys. Rev. B 75, 165411 (2007).

    ADS  Article  Google Scholar 

  5. Nomura, K., Ryu, S. & Lee, D.-H. Field-induced Kosterlitz–Thouless transition in the N = 0 Landau level of graphene. Phys. Rev. Lett. 103, 216801 (2009).

    ADS  Article  Google Scholar 

  6. Lee, J. & Sachdev, S. Deconfined criticality in bilayer graphene. Phys. Rev. B 90, 195427 (2014).

    ADS  Article  Google Scholar 

  7. Wu, F., Sodemann, I., Araki, Y., MacDonald, A. H. & Jolicoeur, T. SO(5) symmetry in the quantum Hall effect in graphene. Phys. Rev. B 90, 235432 (2014).

    ADS  Article  Google Scholar 

  8. Lee, J. & Sachdev, S. Wess–Zumino–Witten terms in graphene Landau levels. Phys. Rev. Lett. 114, 226801 (2015).

    ADS  Article  Google Scholar 

  9. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    ADS  Article  Google Scholar 

  10. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    ADS  Article  Google Scholar 

  11. Li, J. I. A. et al. Even denominator fractional quantum Hall states in bilayer graphene. Science 358, 648–652 (2017).

    ADS  Article  Google Scholar 

  12. Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    ADS  Article  Google Scholar 

  13. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    ADS  Article  Google Scholar 

  14. Amet, F., Williams, J. R., Watanabe, K., Taniguchi, T. & Goldhaber-Gordon, D. Insulating behavior at the neutrality point in single-layer graphene. Phys. Rev. Lett. 110, 216601 (2013).

    ADS  Article  Google Scholar 

  15. Kharitonov, M. Phase diagram for the v=0 quantum Hall state in monolayer graphene. Phys. Rev. B 85, 155439 (2012).

    ADS  Article  Google Scholar 

  16. Kharitonov, M. Canted antiferromagnetic phase of the v = 0 quantum Hall state in bilayer graphene. Phys. Rev. Lett. 109, 046803 (2012).

    ADS  Article  Google Scholar 

  17. Sodemann, I. & MacDonald, A. H. Broken SU(4) symmetry and the fractional quantum Hall effect in graphene. Phys. Rev. Lett. 112, 126804 (2014).

    ADS  Article  Google Scholar 

  18. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).

    ADS  Article  Google Scholar 

  19. Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C 15, L1299–L1303 (1982).

    ADS  Article  Google Scholar 

  20. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    ADS  Article  Google Scholar 

  21. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    ADS  Article  Google Scholar 

  22. Dean, C. R. et al. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 7, 693–696 (2011).

    Article  Google Scholar 

  23. Feldman, B. E., Krauss, B., Smet, J. H. & Yacoby, A. Unconventional sequence of fractional quantum Hall states in suspended graphene. Science 337, 1196–1199 (2012).

    ADS  Article  Google Scholar 

  24. Feldman, B. E.et al. Fractional quantum Hall phase transitions and four-flux states in graphene. Phys. Rev. Lett. 111, 076802 (2013).

    ADS  Article  Google Scholar 

  25. Amet, F. et al. Composite fermions and broken symmetries in graphene. Nat. Commun. 6, 5838 (2015).

    Article  Google Scholar 

  26. Apalkov, V. M. & Chakraborty, T. Fractional quantum Hall states of Dirac electrons in graphene. Phys. Rev. Lett. 97, 126801 (2006).

    ADS  Article  Google Scholar 

  27. Tőke, C. & Jain, J. K. Theoretical study of even denominator fractions in graphene: Fermi sea versus paired states of composite fermions. Phys. Rev. B 76, 081403(R) (2007).

    ADS  Article  Google Scholar 

  28. Toke, C. & Jain., J. K.. SU(4) composite fermions in graphene: fractional quantum Hall states without analog in GaAs. Phys. Rev. B 75, 245440 (2007).

    ADS  Article  Google Scholar 

  29. Shibata, N. & Nomura, K. Fractional quantum Hall effects in graphene and its bilayer. J. Phys. Soc. Jpn 78, 104708–104715 (2009).

    ADS  Article  Google Scholar 

  30. Papic, Z., Goerbig, M. O. & Regnault, N. Atypical fractional quantum Hall effect in graphene at filling factor 1/3. Phys. Rev. Lett. 105, 176802 (2010).

    ADS  Article  Google Scholar 

  31. Toke, C. & Jain, J. K. Multi-component fractional quantum Hall states in graphene: SU(4) versus SU(2). J. Phys. Condens. Matter 24, 235601 (2011).

    ADS  Article  Google Scholar 

  32. Papic, Z., Thomale, R. & Abanin, D. A. Tunable electron interactions and fractional quantum Hall states in graphene. Phys. Rev. Lett. 107, 176602 (2011).

    ADS  Article  Google Scholar 

  33. Peterson, M. R. & Nayak, C. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene. Phys. Rev. Lett. 113, 086401 (2014).

    ADS  Article  Google Scholar 

  34. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    ADS  Article  Google Scholar 

  35. Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).

    Article  Google Scholar 

  36. Ki, D.-K., Fal’ko, V. I., Abanin, D. A. & Morpurgo, A. F. Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. Nano Lett. 14, 2135–2139 (2014).

    ADS  Article  Google Scholar 

  37. Abanin, D. A., Skachko, I., Du, X., Andrei, E. Y. & Levitov, L. S. Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength. Phys. Rev. B 81, 115410 (2010).

    ADS  Article  Google Scholar 

  38. Halperin, B. I. Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75–102 (1983).

    Google Scholar 

  39. Suen, Y. W., Engel, L. W., Santos, M. B., Shayegan, M. & Tsui, D. C. Observation of a v = 1/2 fractional quantum Hall state in a double-layer electron system. Phys. Rev. Lett. 68, 1379–1382 (1992).

    ADS  Article  Google Scholar 

  40. Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383–1386 (1992).

    ADS  Article  Google Scholar 

  41. Liu, Y. et al. Even-denominator fractional quantum Hall effect at a Landau level crossing. Phys. Rev. B 89, 165313 (2014).

    ADS  Article  Google Scholar 

  42. Liu, Y. et al. Fractional quantum Hall effect at v = 1/2 in hole systems confined to GaAs quantum wells. Phys. Rev. Lett. 112, 046804 (2014).

    ADS  Article  Google Scholar 

  43. Luhman, D. R. et al. Observation of a fractional quantum Hall state at v = 1/4 in a wide GaAs quantum well. Phys. Rev. Lett. 101, 266804 (2008).

    ADS  Article  Google Scholar 

  44. Shabani, J., Gokmen, T., Chiu, Y. T. & Shayegan, M. Evidence for developing fractional quantum Hall states at even denominator 1/2 and 1/4 fillings in asymmetric wide quantum wells. Phys. Rev. Lett. 103, 256802 (2009).

    ADS  Article  Google Scholar 

  45. Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74, 075422 (2006).

    ADS  Article  Google Scholar 

  46. Du, R. R. et al. Fractional quantum Hall effect around v = 3/2: composite fermions with a spin. Phys. Rev. Lett. 75, 3926–3929 (1995).

    ADS  Article  Google Scholar 

  47. Balram, A. C., Toke, C., Wojs, A. & Jain, J. K. Phase diagram of fractional quantum Hall effect of composite fermions in multicomponent systems. Phys. Rev. B 91, 045109 (2015).

    ADS  Article  Google Scholar 

  48. Abanin, D. A., Feldman, B. E., Yacoby, A. & Halperin, B. I. Fractional and integer quantum Hall effects in the zeroth Landau level in graphene. Phys. Rev. B 88, 115407 (2013).

    ADS  Article  Google Scholar 

  49. Pientka, F., Waissman, J., Kim, P. & Halperin, B. I. Thermal transport signatures of broken-symmetry phases in graphene. Phys. Rev. Lett. 119, 027601 (2017).

    ADS  Article  Google Scholar 

  50. Wei, Di. S. et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Preprint at http://arXiv.org/abs/1801.08534 (2018).

  51. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Article  Google Scholar 

  52. Goodall, R. K., Higgins, R. J. & Harrang, J. P. Capacitance measurements of a quantized two-dimensional electron gas in the regime of the quantum Hall effect. Phys. Rev. B 31, 6597–6608 (1985).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with D. Abanin, G. Murthy, Z. Papic, I. Sodemann and M. Zaletel and the experimental assistance of S. Hannahs. Magnetocapacitance measurements were funded by the National Science Foundation under DMR-1654186. A portion of the nanofabrication and transport measurements were funded by Army Research Office under proposal 69188PHH. A.F.Y. acknowledges the support of the David and Lucile Packard Foundation. E.M.S. acknowledges the support of the Elings Prize Fellowship in Science of the California Nanosystems Institute at the University of California, Santa Barbara (UCSB). The research reported here made use of shared facilities of the UCSB Materials Research Science and Engineering Center (NSF DMR 1720256), a member of the Materials Research Facilities Network (www.mrfn.org). Measurements above 14 T were performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative agreement no. DMR-1157490 and the State of Florida. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science KAKENHI grant no. JP15K21722.

Author information

Authors and Affiliations

Authors

Contributions

E.M.S. fabricated devices A, B and C, and H.Z. fabricated device D.T.T. and K.W. synthesized the hexagonal boron nitride crystals. A.F.Y. and C.K. built the measurement electronics. A.A.Z., E.M.S. and A.F.Y. acquired and analysed the experimental data. A.A.Z., E.M.S. and A.F.Y. wrote the paper.

Corresponding author

Correspondence to A. F. Young.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary figures S1–S18

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zibrov, A.A., Spanton, E.M., Zhou, H. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nature Phys 14, 930–935 (2018). https://doi.org/10.1038/s41567-018-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0190-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing