Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2


Recent experimental evidence for the quantum spin Hall (QSH) state in monolayer WTe2 has linked the fields of two-dimensional materials and topological physics1,2,3,4,5,6,7. This two-dimensional topological crystal also displays unconventional spin–torque8 and gate-tunable superconductivity7. Whereas the realization of the QSH has demonstrated the nontrivial topology of the electron wavefunctions of monolayer WTe2, the geometrical properties of the wavefunction, such as the Berry curvature9, remain unstudied. Here we utilize mid-infrared optoelectronic microscopy to investigate the Berry curvature in monolayer WTe2. By optically exciting electrons across the inverted QSH gap, we observe an in-plane circular photogalvanic current even under normal incidence. The application of an out-of-plane displacement field allows further control of the direction and magnitude of the photocurrent. The observed photocurrent reveals a Berry curvature dipole that arises from the nontrivial wavefunctions near the inverted gap edge. The Berry curvature dipole and strong electric field effect are enabled by the inverted band structure and tilted crystal lattice of monolayer WTe2. Such an electrically switchable Berry curvature dipole may facilitate the observation of a wide range of quantum geometrical phenomena such as the quantum nonlinear Hall10,11, orbital-Edelstein12 and chiral polaritonic effects13,14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal and electronic structures of monolayer WTe2.
Fig. 2: Observation of circular photogalvanic effect in monolayer WTe2.
Fig. 3: Systematic control of the circular photogalvanic current by displacement fields.
Fig. 4: Berry curvature dipole and its control via a topological field effect.


  1. 1.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Zheng, F. et al. On the quantum spin Hall gap of monolayer 1T′–WTe2. Adv. Mater. 28, 4845–4851 (2016).

    Article  Google Scholar 

  3. 3.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  Google Scholar 

  4. 4.

    Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  Google Scholar 

  5. 5.

    Jia, Z.-Y. et al. Direct visualization of a two-dimensional topological insulator in the single-layer 1T′-WTe2. Phys. Rev. B 96, 041108 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Wu, S. et al. Observation of Topological Insulating and Superconducting Ground States of Monolayer WTe2. Bull. Am. Phys. Soc. (2018).

  8. 8.

    MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2 ferromagnet bilayers. Nat. Phys. 13, 300–305 (2016).

    Article  Google Scholar 

  9. 9.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein effect as a condensed-matter analog of solenoid. Nano Lett. 18, 916–920 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Basov, D., Fogler, M. & de Abajo, F. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  14. 14.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Article  Google Scholar 

  16. 16.

    Rikken, G. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    ADS  Article  Google Scholar 

  17. 17.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospin in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  18. 18.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Son, D. & Spivak, B. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Gradhand, M. & Annett, J. F. The Berry curvature of the Bogoliubov quasiparticle Bloch states in the unconventional superconductor Sr2RuO4. J. Phys. Condens. Matter 26, 274205 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–211 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Soluyanov, A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Sipe, J. & Shkrebtii, A. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    ADS  Article  Google Scholar 

  25. 25.

    Wittmann, B. et al. Circular photogalvanic effect in HgTe/CdHgTe quantum well structures. Semicond. Sci. Technol. 25, 095005 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotech. 7, 96–100 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Yuan, H. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat. Nanotech. 9, 851–857 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  Google Scholar 

  30. 30.

    Muechler, L., Alexandradinata, A., Neupert, T. & Car, R. Topological nonsymmorphic metals from band inversion. Phys. Rev. X 6, 041069 (2016).

    Google Scholar 

  31. 31.

    Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).

    Article  Google Scholar 

  32. 32.

    Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    Article  Google Scholar 

  33. 33.

    Zhang, Y., Sun, Y. & Yan, B. The Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101(R) (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Lee, J., Wang, Z., Xie, H., Mak, K. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  37. 37.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    ADS  Article  Google Scholar 

  38. 38.

    Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    ADS  Article  Google Scholar 

Download references


We acknowledge Y. Lin and T. Palacios for their assistance on measurements. Work in the P.J.-H. group was partly supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Award Number DESC0001088 (fabrication and measurement) and partly through AFOSR grant FA9550-16-1-0382 (data analysis), as well as the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4541 to P.J.-H. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (Grant No. DMR-0819762). N.G. and S.Y.X. acknowledge support from DOE, BES DMSE (data taking and analysis), and the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4540 (manuscript writing). The WTe2 crystal growth performed at Princeton University was supported by an NSF MRSEC grant, DMR-1420541 (Q.D.G. and R.J.C.). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP15K21722. H.S. and L.F. acknowledge support from NSF Science and Technology Center for Integrated Quantum Materials grant DMR-1231319 (theory). The WTe2 film growth performed at Nanyang Technological University was supported by MOE Tier 2 grants MOE2016-T2-2-153 and MOE2015-T2-2-007 and the Singapore National Research Foundation under NRF award number NRF-NRFF2013-08. T.R.C. was supported by the Ministry of Science and Technology under the MOST Grant for the Columbus Program NO. 107-2636-M-006-004, National Cheng Kung University, Taiwan, and National Center for Theoretical Sciences (NCTS), Taiwan.

Author information




Q.M. and S.Y.X. performed the measurements and analysed the data with help from A.M.M.V. V.F. and S.W. fabricated the devices. Q.D.G. and R.J.C. grew the bulk WTe2 single crystals. K.W. and T.T. grew the bulk hBN single crystals. J.Z. and Z.L. grew the WTe2 CVD films. T.R.C., G.C. and H.L. calculated the first-principles band structures. S.Y.X., Q.M., H.S. and L.F. did theoretical analysis of the Berry curvature dipole with help from C.K.C. H.S. and L.F. performed analysis of the kp model. S.Y.X. and Q.M. wrote the manuscript with input from all authors. P.J.-H. and N.G. supervised the project.

Corresponding authors

Correspondence to Nuh Gedik or Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures S1 to S31, and Supplementary tables S1 to S5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, SY., Ma, Q., Shen, H. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nature Phys 14, 900–906 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing