Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Constant-pressure sound waves in non-Hermitian disordered media


When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions of a wave’s free propagation is a challenging task with many applications in a number of different disciplines. In a recent theoretical proposal, it was pointed out that both perfect transmission through disorder as well as a complete suppression of any variation in a wave’s intensity can be achieved by adding a continuous gain–loss distribution to the disorder. Here we propose a practical discretized version of this abstract concept and implement it in a realistic acoustic system. Our prototype consists of an acoustic waveguide containing several inclusions that scatter the incoming wave in a passive configuration and provide the gain or loss when being actively controlled. Our measurements on this non-Hermitian acoustic metamaterial demonstrate the creation of a reflectionless scattering wave state that features a unique form of discrete constant-amplitude pressure waves. In addition to demonstrating that gain–loss additions can turn localized systems into transparent ones, we expect our proof-of-principle demonstration to trigger interesting new developments, not only in sound engineering, but also in other related fields such as in non-Hermitian photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept of continuous constant-pressure waves.
Fig. 2: Discrete constant-pressure acoustic waves.
Fig. 3: Microscopic field dynamics in a non-Hermitian metamaterial supporting discrete constant-pressure acoustic waves.
Fig. 4: Adding gain and loss to counteract scattering defects of any type.
Fig. 5: Non-Hermitian metamaterial prototype supporting discrete constant-amplitude pressure waves.
Fig. 6: Experimental proof of discrete constant-amplitude pressure waves.


  1. 1.

    Tourin, A., Fink, M. & Derode, A. Multiple scattering of sound. Waves Random Media 10, R31–R60 (2000).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Akkermans, É. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, Cambridge, 2007).

  3. 3.

    Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

  4. 4.

    Mudry, K. M., Plonsey, R. & Bronzino, J. D. Biomedical Imaging (CRC Press, Boca Raton, FL, 2003).

  5. 5.

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling Electromagnetic Fields. Science 312, 1780–1782 (2006).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Iniewski, K. Wireless Technologies: Circuits, Systems, and Devices (CRC Press, Boca Raton, FL, 2007).

  7. 7.

    Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl Acad. Sci. USA 106, 20658–20663 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Tyson, R. Principles of Adaptive Optics (CRC Press, Boca Raton, FL, 2010).

  9. 9.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Rotter, S. & Gigan, S. Light fields in complex media: Mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Leseur, O., Pierrat, R. & Carminati, R. High-density hyperuniform materials can be transparent. Optica 3, 763–767 (2016).

    Article  Google Scholar 

  12. 12.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

    Article  Google Scholar 

  13. 13.

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  Google Scholar 

  15. 15.

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  18. 18.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity–time symmetry. Nat. Commun. 6, 5905 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Shi, C. et al. Accessing the exceptional points of parity–time symmetric acoustics. Nat. Commun. 7, 11110 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Aurégan, Y. & Pagneux, V. PT-symmetric scattering in flow-duct acoustics. Phys. Rev. Lett. 118, 174301 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Konotop, V. V. & Zezyulin, D. A. Families of stationary modes in complex potentials. Opt. Lett. 39, 5535–5538 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Makris, K. G., Musslimani, Z. H., Christodoulides, D. N. & Rotter, S. Constant intensity waves and their modulation instabilities in non-Hermitian potentials. Nat. Commun. 6, 7257 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017).

    Article  Google Scholar 

  30. 30.

    Fleury, R. & Alù, A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Pozar D. M. in Microwave Engineering 206–210 (Wiley, New York, NY, 2011).

  32. 32.

    Rivet, E., Karkar, S. & Lissek, H. Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control. IEEE Trans. Control Syst. Technol. 25, 63–72 (2017).

    Article  Google Scholar 

  33. 33.

    Prandoni P. & Vetterli M. in Signal Processing for Communications 348–349 (Collection le savoir Suisse, Lausanne, 2008).

  34. 34.

    Lissek, H., Boulandet, R. & Fleury, R. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption. J. Acoust. Soc. Am. 129, 2968–2978 (2011).

    ADS  Article  Google Scholar 

Download references


The authors would like to thank M. Paolone and the Distributed Electrical Systems Laboratory at Ecole Polytechnique Fédérale de Lausanne (EPFL) for lending us the National Instrument CompactRIO-9068 platform for the experiment.

Author information




A.B., K.G.M. and S.R. developed the concept and theory of continuous constant amplitude waves. E.R. and R.F. developed the discrete theory of constant-amplitude waves and performed the numerical simulations. E.R. formulated the acoustic impedance control theory, developed the control technology used in the experiment, and performed the experiment. H.L. supervised the experimental work. S.R. and R.F. initiated and supervised the project. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Romain Fleury.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material

Supplementary figures 1 and 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rivet, E., Brandstötter, A., Makris, K.G. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nature Phys 14, 942–947 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing