Perspective | Published:

The limits of nuclear mass and charge

Nature Physicsvolume 14pages537541 (2018) | Download Citation

Abstract

Four new elements with atomic numbers Z = 113, 115, 117 and 118 have recently been added to the periodic table. The questions pertaining to these superheavy systems are at the forefront of research in nuclear and atomic physics, and chemistry. This Perspective offers a high-level view of the field and outlines future challenges.

  • Subscribe to Nature Physics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, E. Discovery of the elements with atomic numbers Z  = 113, 115 and 117. Pure Appl. Chem. 88, 139–153 (2016).

  2. 2.

    Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, E. Discovery of the element with atomic number Z  = 118 completing the 7th row of the periodic table (IUPAC Technical Report). Pure Appl. Chem. 88, 155–160 (2016).

  3. 3.

    Münzenberg, G. & Morita, K. Synthesis of the heaviest nuclei in cold fusion reactions. Nucl. Phys. A 944, 3–4 (2015).

  4. 4.

    Oganessian, Y. T. & Utyonkov, V. K. Super-heavy element research. Rep. Prog. Phys. 78, 036301 (2015).

  5. 5.

    Düllmann, C. E. Studying chemical properties of the heaviest elements: one atom at a time. Nucl. Phys. News 27, 14–20 (2017).

  6. 6.

    Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).

  7. 7.

    Ćwiok, S., Dobaczewski, J., Heenen, P.-H., Magierski, P. & Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211–246 (1996).

  8. 8.

    Heenen, P.-H., Skalski, J., Staszczak, A. & Vretenar, D. Shapes and α- and β-decays of superheavy nuclei. Nucl. Phys. A 944, 415–441 (2015).

  9. 9.

    Myers, W. D. & Swiatecki, W. Nuclear masses and deformations. J. Nucl. Phys. 81, 1–60 (1966).

  10. 10.

    Magierski, P. & Heenen, P.-H. Structure of the inner crust of neutron stars: crystal lattice or disordered phase? Phys. Rev. C. 65, 045804 (2002).

  11. 11.

    Schuetrumpf, B., Nazarewicz, W. & Reinhard, P.-G. Central depression in nucleonic densities: trend analysis in the nuclear density functional theory approach. Phys. Rev. C. 96, 024306 (2017).

  12. 12.

    Ćwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005).

  13. 13.

    Düllmann, C. E. & Block, M. Island of heavyweights. Sci. Am. 318, 46–53 (2018).

  14. 14.

    Nilsson, S. G. et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1–66 (1969).

  15. 15.

    Bender, M., Nazarewicz, W. & Reinhard, P.-G. Shell stabilization of super- and hyperheavy nuclei without magic gaps. Phys. Lett. B 515, 42–48 (2001).

  16. 16.

    Agbemava, S. E., Afanasjev, A. V., Nakatsukasa, T. & Ring, P. Covariant density functional theory: reexamining the structure of superheavy nuclei. Phys. Rev. C. 92, 054310 (2015).

  17. 17.

    Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P. & Nazarewicz, W. Electron and nucleon localization functions of Oganesson: approaching the Thomas-Fermi limit. Phys. Rev. Lett. 120, 053001 (2018).

  18. 18.

    Möller, P., & Nix, J. R. Stability of heavy and superheavy elements. J. Phys. G 20, 1681–1747 (1994).

  19. 19.

    Tolokonnikov, S. V., Borzov, I. N., Kortelainen, M., Lutostansky, Y. S. & Saperstein, E. E. Alpha-decay energies of superheavy nuclei for the Fayans functional. Eur. Phys. J. A 53, 33 (2017).

  20. 20.

    Baran, A. et al. Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100. Nucl. Phys. A 944, 442–470 (2015).

  21. 21.

    Giuliani, S. A., Martnez-Pinedo, G. & Robledo, L. M. Fission properties of superheavy nuclei for r-process calculations. Phys. Rev. C. 97, 034323 (2018).

  22. 22.

    Poenaru, D. N., Gherghescu, R. A., Greiner, W. & Shakib, N. S. How Rare Is Cluster Decay of Superheavy Nuclei? 131–140 (Springer, Cham, 2015).

  23. 23.

    Warda, M. & Robledo, L. M. Microscopic description of cluster radioactivity in actinide nuclei. Phys. Rev. C. 84, 044608 (2011).

  24. 24.

    Schwerdtfeger, P., Pašteka, L. F., Punnett, A. & Bowman, P. O. Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551–577 (2015).

  25. 25.

    Schwerdtfeger, P. Toward an accurate description of solid-state properties of superheavy elements: A case study for the element Og (Z = 118). EPJ Web Conf. 131, 07004 (2016).

  26. 26.

    Eliav, E., Fritzsche, S., & Kaldor, U. Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518–550 (2015).

  27. 27.

    Pyykkö, P. A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161–168 (2011).

  28. 28.

    Wapstra, A. H. et al. Criteria that must be satisfied for the discovery of a new chemical element to be recognized. Pure Appl. Chem. 63, 879–886 (1991).

  29. 29.

    Korschinek, G., & Kutschera, W. Mass spectrometric searches for superheavy elements in terrestrial matter. Nucl. Phys. A 944, 190–203 (2015).

  30. 30.

    Ter-Akopian, G., & Dmitriev, S. Searches for superheavy elements in nature: cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177–189 (2015).

  31. 31.

    Goriely, S. & Pinedo, G. M. The production of transuranium elements by the r-process nucleosynthesis. Nucl. Phys. A 944, 158–176 (2015).

  32. 32.

    Ackermann, D. & Theisen, C. Nuclear structure features of very heavy and superheavy nuclei—tracing quantum mechanics towards the ‘island of stability’. Phys. Scr. 92, 083002 (2017).

  33. 33.

    Zagrebaev, V., & Greiner, W. Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257–307 (2015).

  34. 34.

    Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G., & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).

  35. 35.

    Loveland, W. Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C. 76, 014612 (2007).

  36. 36.

    Lee, M. S. Elemental haiku. Science 357, 461–463 (2017).

  37. 37.

    Dmitriev, S., Itkis, M. & Oganessian, Y. Status and perspectives of the Dubna superheavy element factory. EPJ Web Conf. 131, 08001 (2016).

Download references

Acknowledgements

Discussions with Y. Oganessian and P. Schwerdtfeger, and useful comments from D. Lee are gratefully appreciated. This work was supported by the US Department of Energy under award numbers DOE-DE-NA0002847 (NNSA, the Stewardship Science Academic Alliances programme), DE-SC0013365 (Office of Science) and DE-SC0018083 (Office of Science, NUCLEI SciDAC-4 collaboration).

Author information

Affiliations

  1. Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, MI, USA

    • Witold Nazarewicz

Authors

  1. Search for Witold Nazarewicz in:

Competing interests

The author declares no competing interests.

Corresponding author

Correspondence to Witold Nazarewicz.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0163-3

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.