Abstract

Cherenkov radiation provides a valuable way to identify high-energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on the material’s permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, ring-imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi-gigaelectronvolt range, and thus are often limited to large gas chambers. It would be extremely important, albeit challenging, to lift this fundamental limit and control Cherenkov angles at will. Here we propose a new mechanism that uses the constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward effective Cherenkov radiation. This mechanism can control the radiation angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising versatile platform well suited for identification of particles at high energy with enhanced sensitivity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Cherenkov, P. A. Visible emission of clean liquids by action of gamma radiation. Dokl. Akad. Nauk SSSR 2, 451–454 (1934).

  2. 2.

    Frank, I. M. & Tamm, I. Dokl. Akad. Nauk SSSR 14, 109–114 (1937).

  3. 3.

    de Abajo, F. J. G. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).

  4. 4.

    Adamo, G. et al. Light well: A tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).

  5. 5.

    Cook, A. M. et al. Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide. Phys. Rev. Lett. 103, 095003 (2009).

  6. 6.

    Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

  7. 7.

    Galbraith, W. & Jelley, J. V. Light pulses from the night sky associated with cosmic rays. Nature 171, 349–350 (1953).

  8. 8.

    Ypsilantis, T. & Seguinot, J. Theory of ring imaging Cherenkov counters. Nucl. Instrum. Meth. A 343, 30–51 (1994).

  9. 9.

    Adam, I. et al. The DIRC particle identification system for the BaBar experiment. Nucl. Instrum. Meth. A 538, 281–357 (2005).

  10. 10.

    Alves, A. A. Jr. et al. (LHCb Collaboration) The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).

  11. 11.

    Adinolfi, M. et al. (LHCb RICH Collaboration) Performance of the LHCb RICH at the LHC. Eur. Phys. J. C 73, 2431 (2013).

  12. 12.

    Abashian, A. et al. The Belle detector. Nucl. Instrum. Meth. A 478, 117–232 (2002).

  13. 13.

    Palik, E. D. Handbook of Optical Constants of Solids. (Academic, New York, NY, 1985).

  14. 14.

    Ginis, V., Danckaert, J., Veretennicoff, I. & Tassin, P. Controlling Cherenkov radiation with transformation-optical metamaterials. Phys. Rev. Lett. 113, 167402 (2014).

  15. 15.

    Chamberlain, O., Segrè, E., Wiegand, C. & Ypsilantis, T. Observation of antiprotons. Phys. Rev. 100, 947–950 (1955).

  16. 16.

    Aubert, J. J. et al. Experimental observation of a heavy particle. J. Phys. Rev. Lett. 33, 1404–1406 (1974).

  17. 17.

    Liu, S. et al. Surface polariton Cherenkov light radiation source. Phys. Rev. Lett. 109, 153902 (2012).

  18. 18.

    Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2016).

  19. 19.

    Denis, T. et al. Coherent Cherenkov radiation and laser oscillation in a photonic crystal. Phys. Rev. A 94, 053852 (2016).

  20. 20.

    Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

  21. 21.

    Xi, S. et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterials. Phys. Rev. Lett. 103, 194801 (2009).

  22. 22.

    de Abajo, F. J. G. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

  23. 23.

    Vorobev, V. V. & Tyukhtin, A. V. Nondivergent Cherenkov radiation in a wire metamaterial. Phys. Rev. Lett. 108, 184801 (2012).

  24. 24.

    Ren, H., Deng, X., Zheng, Y., An, N. & Chen, X. Nonlinear Cherenkov radiation in an anomalous dispersive medium. Phys. Rev. Lett. 108, 223901 (2012).

  25. 25.

    Genevet, P. et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotech. 10, 804–809 (2015).

  26. 26.

    Shi, X. et al. Caustic graphene plasmons with Kelvin angle. Phys. Rev. B 92, 081404(R) (2015).

  27. 27.

    Kaminer, I. et al. Quantum Čerenkov radiation: Spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2016).

  28. 28.

    Hummelt, J. S. et al. Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide. Phys. Rev. Lett. 117, 237701 (2016).

  29. 29.

    Duan, Z. et al. Observation of the reversed Cherenkov radiation. Nat. Commun. 8, 14901 (2017).

  30. 30.

    Joannopoulos, J., Johnson, S., Winn, J. & Meade, R. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, NJ, 2011).

  31. 31.

    Zhang, Y. et al. Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides. Phys. Rev. Lett. 100, 163904 (2008).

  32. 32.

    Andronic, A. & Wessels, J. P. Transition radiation detectors. Nucl. Instrum. Meth. A 666, 130–147 (2012).

  33. 33.

    Jackson, J. D. Classical Electrodynamics (Wiley, Hoboken, NJ, 1999).

  34. 34.

    Ginzburg, V. L. & Tsytovich, V. N. Transition Radiation and Transition Scattering (CRC, Boca Raton, FL, 1990).

  35. 35.

    Ginzburg, V. L. & Tsytovich, V. N. Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49, 1–89 (1979).

  36. 36.

    Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953).

  37. 37.

    Kaminer, I. et al. Spectrally and spatially resolved Smith–Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).

  38. 38.

    Lin, X. et al. Splashing transients of 2D plasmons launched by swift electrons. Sci. Adv. 3, e1601192 (2017).

  39. 39.

    Chen, H. & Chen, M. Flipping photons backward: reversed Cherenkov radiation. Mater. Today 14, 34–41 (2011).

  40. 40.

    Dey, B. et al. Design and performance of the focusing DIRC detector. Nucl. Instrum. Meth. A 775, 112–131 (2015).

  41. 41.

    Fang, A., Koschny, Th., Wegener, M. & Soukoulis, C. M. Self-consistent calculation of metamaterials with gain. Phys. Rev. B 79, 241104(R) (2009).

  42. 42.

    Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Overcoming losses with gain in a negative refractive index metamaterial. Phys. Rev. Lett. 105, 127401 (2010).

  43. 43.

    Wang, Y. T. et al. Gain-assisted hybrid-superlens hyperlens for nano imaging. Opt. Exp. 20, 22953–22960 (2012).

  44. 44.

    Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

  45. 45.

    Kidger, M. J. Fundamental Optical Design (SPIE, Bellingham, WA, 2002).

  46. 46.

    Liu, R. Y. F. et al. Forced assembly of polymer nanolayers thinner than the interphase. Macromolecules 38, 10721–10727 (2005).

  47. 47.

    Pursiainena, O. L. J. et al. Compact strain-sensitive flexible photonic crystals for sensors. Appl. Phys. Lett. 87, 101902 (2005).

  48. 48.

    Arsenault, A. C., Puzzo, D. P., Manners, I. & Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photon. 1, 468–472 (2007).

  49. 49.

    Sheinfux, H. H. et al. Observation of Anderson localization in disordered nanophotonic structures. Science 356, 953–956 (2017).

  50. 50.

    Shen, Y. et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (grants no. 61625502, 61574127 and 61601408), the ZJNSF (LY17F010008), the Top-Notch Young Talents Program of China, the Fundamental Research Funds for the Central Universities, the Innovation Joint Research Center for Cyber-Physical-Society System, Nanyang Technological University for NAP Start-Up Grant, the Singapore Ministry of Education (grants no. MOE2015-T2-1-070 and MOE2016-T3-1-006, and Tier 1 RG174/16 (S)) and the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies (contract no. W911NF-18-2-0048 and W911NF-13-D-0001). I. Kaminer is an Azrieli Fellow, supported by the Azrieli Foundation, and was partially supported by the Seventh Framework Programme of the European Research Council (FP7-Marie Curie IOF) under grant no. 328853-MC-BSiCS.

Author information

Affiliations

  1. State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou, China

    • Xiao Lin
    •  & Hongsheng Chen
  2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore

    • Xiao Lin
    •  & Baile Zhang
  3. Particle Physics Department, Rutherford-Appleton Laboratory (STFC-UKRI), Didcot, UK

    • Sajan Easo
  4. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Yichen Shen
    • , John D. Joannopoulos
    •  & Marin Soljačić
  5. Centre for Disruptive Photonic Technologies, NTU, Singapore, Singapore

    • Baile Zhang
  6. Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel

    • Ido Kaminer

Authors

  1. Search for Xiao Lin in:

  2. Search for Sajan Easo in:

  3. Search for Yichen Shen in:

  4. Search for Hongsheng Chen in:

  5. Search for Baile Zhang in:

  6. Search for John D. Joannopoulos in:

  7. Search for Marin Soljačić in:

  8. Search for Ido Kaminer in:

Contributions

X.L., I.K. and S.E. initiated the idea; X.L. performed the calculation; X.L., S.E., Y.S., H.C., B.Z., J.D.J., M.S. and I.K. analysed data, interpreted detailed results and contributed extensively to the writing of the manuscript; I.K., S.E., H.C., B.Z., J.D.J. and M.S. supervised the project.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Sajan Easo.

Supplementary information

  1. Supplementary information

    Supplementary Text, Supplementary figures 1–19, References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0138-4