The physics of cooperative transport in groups of ants


Anyone who has moved furniture together with friends will appreciate that cooperative transport requires some non-trivial communication. Yet ants are adept at collectively moving objects several times their size. How they do so has long been a subject of research, but recent advances have suggested that this communication occurs through the forces the ants exert on the load. This implies that the collective transport problem can be mapped to an Ising model, in which decisions by individual ants are described by spin flips. Within this framework, the group is poised in the vicinity of the transition between uncoordinated and coordinated motion. It thus profits from both internal coordination and maximal responsiveness to external information, mediated by temporarily informed leader ants. Here, we review the implications of these findings for cooperative transport, and discuss the way in which a more complete multiscale understanding of such systems would require the development of a new formalism that combines statistical physics of interacting particles with the cognitive capabilities of individuals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cooperative transport.
Fig. 2: Empirical findings and theoretical model.
Fig. 3: Criticality, susceptibility and leadership.
Fig. 4: Oscillatory motion under constrained conditions.
Fig. 5: Increasing system size transits the system between order and disorder in experiment and simulation.
Fig. 6: Phase transitions under constrained motion.
Fig. 7: Oscillatory motion in a different species.


  1. 1.

    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995).

  2. 2.

    Toner, J. & Tu, Y. Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995).

  3. 3.

    Toner, J. & Tu, Y. Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998).

  4. 4.

    Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. Natl Acad. Sci. USA 107, 11865–11870 (2010).

  5. 5.

    Vicsek, T. Universal patterns of collective motion from minimal models of flocking. In Proc. 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2008 3–11 (2008).

  6. 6.

    Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

  7. 7.

    Ariel, G. & Ayali, A. Locust collective motion and its modeling. PLoS Comput. Biol. 11, e1004522 (2015).

  8. 8.

    Procaccini, A. et al. Propagating waves in starling, Sturnus vulgaris, flocks under predation. Anim. Behav. 82, 759–765 (2011).

  9. 9.

    Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).

  10. 10.

    Parrish, J. K., Viscido, S. V. & Grunbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305 (2002).

  11. 11.

    Tunstrøm, K. et al. Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9, e1002915 (2013).

  12. 12.

    Pearce, D. J., Miller, A. M., Rowlands, G. & Turner, M. S. Role of projection in the control of bird flocks. Proc. Natl Acad. Sci. USA 111, 10422–10426 (2014).

  13. 13.

    Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).

  14. 14.

    Dussutour, A., Fourcassie, V., Helbing, D. & Deneubourg, J.-L. Optimal traffic organization in ants under crowded conditions. Nature 428, 70–73 (2004).

  15. 15.

    Bazazi, S. et al. Collective motion and cannibalism in locust migratory bands. Curr. Biol. 18, 735–739 (2008).

  16. 16.

    Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569 (2003).

  17. 17.

    Morgan, E. D. Trail pheromones of ants. Physiol. Entomol. 34, 1–17 (2009).

  18. 18.

    Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46 (1994).

  19. 19.

    Darmon, M., Brachet, P. & Da Silva, L. Chemotactic signals induce cell differentiation in dictyostelium discoideum. Proc. Natl Acad. Sci. USA 72, 3163–3166 (1975).

  20. 20.

    Cvikel, N. et al. Bats aggregate to improve prey search but might be impaired when their density becomes too high. Curr. Biol. 25, 206–211 (2015).

  21. 21.

    Gorbonos, D. et al. Long-range acoustic interactions in insect swarms: an adaptive gravity model. New J. Phys. 18, 073042 (2016).

  22. 22.

    Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).

  23. 23.

    Czaczkes, T. J. & Ratnieks, F. L. W. Cooperative transport in ants (Hymenoptera: Formicidae) and elsewhere. Myrmecol. News 18, 1–11 (2013).

  24. 24.

    McCreery, H. & Breed, M. Cooperative transport in ants: a review of proximate mechanisms. Insect Soc. 61, 99–110 (2014).

  25. 25.

    Moffett, M. W. Cooperative food transport by an Asiatic ant. Natl Geogr. Res. 4, 386–394 (1988).

  26. 26.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard Univ. Press, Cambridge, MA, 1990).

  27. 27.

    Sudd, J. H. The transport of prey by ants. Behaviour 25, 234–271 (1965).

  28. 28.

    Buffin, A. & Pratt, S. Cooperative transport by the ant Novomessor cockerelli. Insectes Soc. 63, 429–438 (2016).

  29. 29.

    Franks, N. R. Teams in social insects: group retrieval of prey by army ants (Eciton burchellii, Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 18, 425–429 (1986).

  30. 30.

    Moffett, M. W. Sociobiology of the Ants of the Genus Pheidologeton (Harvard Univ. Press, Cambridge, MA, 1988).

  31. 31.

    Czaczkes, T. & Ratnieks, F. L. Simple rules result in the adaptive turning of food items to reduce drag during cooperative food transport in the ant Pheidole oxyops. Insectes Soc. 58, 91–96 (2011).

  32. 32.

    Berman, S., Lindsey, Q., Sakar, M. S., Kumar, V. & Pratt, S. Study of group food retrieval by ants as a model for multi-robot collective vtransport strategies. Robot. Proc. (2010).

  33. 33.

    Gelblum, A. et al. Ant groups optimally amplify the effect of transiently informed individuals. Nat. Commun. 6, 7729 (2015).

  34. 34.

    Gelblum, A., Pinkoviezky, I., Fonio, E., Gov, N. S. & Feinerman, O. Emergent oscillations assist obstacle negotiation during ant cooperative transport. Proc. Natl Acad. Sci. USA 113, 14615–14620 (2016).

  35. 35.

    McCreery, H. A comparative approach to cooperative transport in ants: individual persistence correlates with group coordination. Insectes Soc. 64, 535–547 (2017).

  36. 36.

    Berman, S., Lindsey, Q., Sakar, M. S., Kumar, V. & Pratt, S. C. Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proc. IEEE 99, 1470–1481 (2011).

  37. 37.

    Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

  38. 38.

    Mora, T. & Bialek, W. Are biological systems poised at criticality? J. Stat. Phys. 144, 268–302 (2011).

  39. 39.

    Bialek, W. et al. Social interactions dominate speed control in poising natural flocks near criticality. Proc. Natl Acad. Sci. USA 111, 7212–7217 (2014).

  40. 40.

    Hidalgo, J. et al. Information-based fitness and the emergence of criticality in living systems. Proc. Natl Acad. Sci. USA 111, 10095–10100 (2014).

  41. 41.

    Attanasi, A. et al. Finite-size scaling as a way to probe near-criticality in natural swarms. Phys. Rev. Lett. 113, 238102 (2014).

  42. 42.

    Sumpter, D., Buhl, J., Biro, D. & Couzin, I. Information transfer in moving animal groups. Theory Biosci. 127, 177–186 (2008).

  43. 43.

    Peeters, C. & De Greef, S. Predation on large millipedes and self-assembling chains in Leptogenys ants from Cambodia. Insectes Soc. 62, 471–477 (2015).

  44. 44.

    Czaczkes, T. J., Vollet-NetoA. & Ratnieks, F. L. Prey escorting behavior and possible convergent evolution of foraging recruitment mechanisms in an invasive ant. Behav. Ecol. 24, 1177–1184 (2013).

  45. 45.

    Trager, J. C. A revision of the genus Paratrechina (Hymenoptera: Formicidae) of the continental united states. Sociobiology 8, 49–162 (1984).

  46. 46.

    McCreery, H. F., Dix, Z. A., Breed, M. D. & Nagpal, R. Collective strategy for obstacle navigation during cooperative transport by ants. J. Exp. Biol. 219, 3366–3375 (2016).

  47. 47.

    Fonio, E. et al. A locally-blazed ant trail achieves efficient collective navigation despite limited information. eLife 5, e20185 (2016).

  48. 48.

    Simons, A. M. Many wrongs: the advantage of group navigation. Trends Ecol. Evol. 19, 453–455 (2004).

  49. 49.

    Galton, F. Vox populi (the wisdom of crowds). Nature 75, 450–451 (1907).

  50. 50.

    Faria, J. J., Codling, E. A., Dyer, J. R., Trillmich, F. & Krause, J. Navigation in human crowds; testing the many-wrongs principle. Anim. Behav. 78, 587–591 (2009).

  51. 51.

    Hancock, W. O. Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15, 615–628 (2014).

  52. 52.

    Hendricks, A. G. et al. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20, 697–702 (2010).

  53. 53.

    Mobilia, M. Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91, 028701 (2003).

  54. 54.

    Hartnett, A. T., Schertzer, E., Levin, S. A. & Couzin, I. D. Heterogeneous preference and local nonlinearity in consensus decision making. Phys. Rev. Lett. 116, 038701 (2016).

  55. 55.

    Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).

  56. 56.

    Razin, N., Eckmann, J.-P. & Feinerman, O. Desert ants achieve reliable recruitment across noisy interactions. J. R. Soc. Interface 10, 20130079 (2013).

  57. 57.

    Robson, S. K. & Traniello, J. F. Transient division of labor and behavioral specialization in the ant Formica schaufussi. Naturwissenschaften 89, 128–131 (2002).

  58. 58.

    Feinerman, O. in Landscapes of Collectivity in the Life Sciences (eds Gissis, S. et al.) Ch. 4 (MIT Press, Cambridge, MA, 2018).

  59. 59.

    Ludwig, M. & Marquardt, F. Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett. 111, 073603 (2013).

  60. 60.

    Chan, C.-K., Lee, T. E. & Gopalakrishnan, S. Limit-cycle phase in driven-dissipative spin systems. Phys. Rev. A 91, 051601 (2015).

  61. 61.

    D’Ettorre, P. & Heinze, J. Sociobiology of slave-making ants. Acta Ethol. 3, 67–82 (2001).

  62. 62.

    Ward, P. S. & Branstetter, M. G. The acacia ants revisited: convergent evolution and biogeographic context in an iconic ant/plant mutualism. Proc. R. Soc. B 284, 1850 (2017).

  63. 63.

    Deneubourg, J.-L., Pasteels, J. M. & Verhaeghe, J.-C. Probabilistic behaviour in ants: a strategy of errors? J. Theor. Biol. 105, 259–271 (1983).

  64. 64.

    Müller, M. & Wehner, R. Path integration in desert ants, Cataglyphis fortis. Proc. Natl Acad. Sci. USA 85, 5287–5290 (1988).

  65. 65.

    Rauch, E. M., Millonas, M. M. & Chialvo, D. R. Pattern formation and functionality in swarm models. Phys. Lett. A 207, 185–193 (1995).

  66. 66.

    Daniels, B. C., Krakauer, D. C. & Flack, J. C. Control of finite critical behaviour in a small-scale social system. Nat. Commun. 8, 14301 (2017).

  67. 67.

    Langton, C. G. Computation at the edge of chaos: phase transitions and emergent computation. Phys. D 42, 12–37 (1990).

  68. 68.

    Kabla, A. J. Collective cell migration: leadership, invasion and segregation. J. R. Soc. Interface 9, 3268–3278 (2012).

  69. 69.

    Szabo, B. et al. Phase transition in the collective migration of tissue cells: experiment and model. Phys. Rev. E 74, 061908 (2006).

  70. 70.

    Goldberg, J. A., Rokni, U. & Sompolinsky, H. Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42, 489–500 (2004).

  71. 71.

    Green, J. et al. A neural circuit architecture for angular integration in Drosophila. Nature 546, 101–106 (2017).

  72. 72.

    Kube, C. R. & Bonabeau, E. Cooperative transport by ants and robots. Robot. Auton. Syst. 30, 85–101 (2000).

  73. 73.

    Iqbal, T., Rack, S. & Riek, L. D. Movement coordination in human–robot teams: A dynamical systems approach. IEEE Trans. Robot. 32, 909–919 (2016).

  74. 74.

    Wilson, S. et al. Design of ant-inspired stochastic control policies for collective transport by robotic swarms. Swarm Intell. 8, 303–327 (2014).

  75. 75.

    Wang, Z. & Schwager, M. in Distributed Autonomous Robotic Systems (eds Chong, N.-Y., Cho, Y.-J.) 135–149 (Springer, Berlin, Heidelberg, 2016).

  76. 76.

    Wang, Z. & Schwager, M. Kinematic multi-robot manipulation with no communication using force feedback. In Proc. 2016 IEEE International Conference on Robotics and Automation (ICRA) 427–432 (IEEE, 2016).

  77. 77.

    Realpe-Gómez, J., Andrighetto, G., Nardin, G. & Montoya, J. A. Balancing selfishness and norm conformity can explain human behavior in large-scale Prisoner's Dilemma games and can poise human groups near criticality. Preprint at (2016).

  78. 78.

    Lehmann, O. F. Situational Project Management: The Dynamics of Success and Failure (CRC Press, Boca Raton, FL, 2016).

  79. 79.

    Puranam, P. When will we stop studying innovations in organizing, and start creating them? Innovation 19, 5–10 (2017).

  80. 80.

    Detrain, C. & Deneubourg, J.-L. Self-organized structures in a superorganism: do ants “behave” like molecules? Phys. Life Rev. 3, 162–187 (2006).

  81. 81.

    Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

Download references


We would like to thank Ehud Altman for useful discussions. N.S.G. is the incumbent of the Lee and William Abramowitz Professorial Chair of Biophysics and is supported by the Israel Science Foundation (ISF) (grant no. 580/12), and Minerva Foundation research grant no. 712601. O.F. is the incumbent of the Shloimo and Michla Tomarin Career Development Chair and was supported by the Israeli Science Foundation grant 833/15, and the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 770964), and the Clore Duffield Foundation. E.F. is the incumbent of the Tom Beck Research Fellow Chair in the Physics of Complex Systems.

Author information

All authors have contributed to the writing and figure preparation of this review.

Correspondence to Ofer Feinerman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feinerman, O., Pinkoviezky, I., Gelblum, A. et al. The physics of cooperative transport in groups of ants. Nature Phys 14, 683–693 (2018) doi:10.1038/s41567-018-0107-y

Download citation

Further reading