Article | Published:

Bulk crystalline optomechanics

Nature Physicsvolume 14pages601607 (2018) | Download Citation


Control of long-lived, high-frequency phonons using light offers a path towards creating robust quantum links, and could lead to tools for precision metrology with applications to quantum information processing. Optomechanical systems based on bulk acoustic-wave resonators are well suited for this goal in light of their high quality factors, and because they do not suffer from surface interactions as much as their microscale counterparts. However, so far these phonons have been accessible only electromechanically, using piezoelectric interactions. Here, we demonstrate customizable optomechanical coupling to macroscopic phonon modes of a bulk acoustic-wave resonator at cryogenic temperatures. These phonon modes, which are formed by shaping the surfaces of a crystal into a plano-convex phononic resonator, yield appreciable optomechanical coupling rates, providing access to high acoustic quality factors (4.2 × 107) at high phonon frequencies (13 GHz). This simple approach, which uses bulk properties rather than nanostructural control, is appealing for the ability to engineer optomechanical systems at high frequencies that are robust against thermal decoherence. Moreover, we show that this optomechanical system yields a unique form of dispersive symmetry-breaking that enables phonon heating or cooling without an optical cavity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  2. 2.

    Meystre, P. A short walk through quantum optomechanics. Ann. Phys. 525, 215–233 (2013).

  3. 3.

    Marquardt, F. & Girvin, S. Optomechanics. Physics 2, 40 (2009).

  4. 4.

    Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nat. Photon. 3, 201–205 (2009).

  5. 5.

    De Lorenzo, L. & Schwab, K. Superfluid optomechanics: coupling of a superfluid to a superconducting condensate. New. J. Phys. 16, 113020 (2014).

  6. 6.

    Lee, H. et al. Chemically etched ultrahigh-q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

  7. 7.

    Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012).

  8. 8.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

  9. 9.

    Wilson, D. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).

  10. 10.

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

  11. 11.

    Jayich, A. et al. Dispersive optomechanics: a membrane inside a cavity. New. J. Phys. 10, 095008 (2008).

  12. 12.

    Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2, 403 (2011).

  13. 13.

    Cohen, J. D. et al. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522–525 (2015).

  14. 14.

    Ekinci, K. & Roukes, M. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

  15. 15.

    Regal, C., Teufel, J. & Lehnert, K. Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555–560 (2008).

  16. 16.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

  17. 17.

    Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon lasing in an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013).

  18. 18.

    Weinstein, A. et al. Observation and interpretation of motional sideband asymmetry in a quantum electromechanical device. Phys. Rev. X 4, 041003 (2014).

  19. 19.

    Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

  20. 20.

    O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

  21. 21.

    Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

  22. 22.

    Schuetz, M. J. A. et al. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X 5, 031031 (2015).

  23. 23.

    Teufel, J. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

  24. 24.

    Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

  25. 25.

    Thaxter, J. & Tannenwald, P. Phonon generation, propagation, and attenuation at 70 GHz. IEEE Trans. Sonics Ultrason. 13, 61–68 (1966).

  26. 26.

    Blair, M. & Jacobsen, E. Very low attenuation of 9.3 Gc elastic waves in quartz at 4.2°K. Phys. Lett. 23, 647–648 (1966).

  27. 27.

    Safavi-Naeini, A. H. et al. Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013).

  28. 28.

    Pitanti, A. et al. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Opt. Express 23, 3196–3208 (2015).

  29. 29.

    Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

  30. 30.

    Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

  31. 31.

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

  32. 32.

    Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

  33. 33.

    Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

  34. 34.

    Galliou, S. et al. Extremely low loss phonon-trapping cryogenic acoustic cavities for future physical experiments. Sci. Rep. 3, 2132 (2013).

  35. 35.

    Goryachev, M., Creedon, D. L., Galliou, S. & Tobar, M. E. Observation of Rayleigh phonon scattering through excitation of extremely high overtones in low-loss cryogenic acoustic cavities for hybrid quantum systems. Phys. Rev. Lett. 111, 085502 (2013).

  36. 36.

    Goryachev, M., Farr, W. G., Galliou, S. & Tobar, M. E. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities. Appl. Phys. Lett. 105, 063501 (2014).

  37. 37.

    Lo, A. et al. Acoustic tests of Lorentz symmetry using quartz oscillators. Phys. Rev. X 6, 011018 (2016).

  38. 38.

    Goryachev, M. & Tobar, M. E. Gravitational wave detection with high frequency phonon trapping acoustic cavities. Phys. Rev. D 90, 102005 (2014).

  39. 39.

    Boyd, R. W. Nonlinear Optics (Academic, San Diego, CA, 2003).

  40. 40.

    Braginsky, V. B., Mitrofanov, V. & Panov, V. I. Systems with Small Dissipation (Univ. of Chicago Press, Chicago, 1985).

  41. 41.

    Cleland, A. N. Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, Berlin, 2013).

  42. 42.

    Ohno, S., Sonehara, T., Tatsu, E., Koreeda, A. & Saikan, S. kHz stimulated Brillouin spectroscopy. Rev. Sci. Instrum. 77, 123104 (2006).

  43. 43.

    Ohno, S., Sonehara, T., Tatsu, E., Koreeda, A. & Saikan, S. Spectral shape of stimulated Brillouin scattering in crystals. Phys. Rev. B 92, 214105 (2015).

  44. 44.

    Sonehara, T., Konno, Y., Kaminaga, H., Saikan, S. & Ohno, S. Frequency-modulated stimulated Brillouin spectroscopy in crystals. J. Opt. Soc. Am. B 24, 1193–1198 (2007).

  45. 45.

    Ohmachi, Y. & Uchida, N. Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals. J. Appl. Phys. 41, 2307–2311 (1970).

  46. 46.

    McSkimin, H., Andreatch, P. Jr & Thurston, R. Elastic moduli of quartz versus hydrostatic pressure at 25° and- 195.8°C. J. Appl. Phys. 36, 1624–1632 (1965).

  47. 47.

    Goryachev, M. et al. Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature. Appl. Phys. Lett. 100, 243504 (2012).

  48. 48.

    Tamura, S., Shields, J. & Wolfe, J. Lattice dynamics and elastic phonon scattering in silicon. Phys. Rev. B 44, 3001–3011 (1991).

  49. 49.

    Tamura, S.-i Isotope scattering of large-wave-vector phonons in GaAs and InSb: Deformation-dipole and overlap-shell models. Phys. Rev. B 30, 849–854 (1984).

  50. 50.

    Vahala, K. J. Back-action limit of linewidth in an optomechanical oscillator. Phys. Rev. A 78, 023832 (2008).

Download references


Primary support for this work was provided by NSF MRSEC DMR-1119826. This work was supported in part by the Packard Fellowship for Science and Engineering and Yale University. The authors thank P. Fleury, Y. Chu, E. Kittlaus, N. Otterstrom, J. Harris, K. Johnson, A. Shkarin, A. Kashkanova and G. Harris for valuable feedback and discussions.

Author information

Author notes

  1. These authors contributed equally: W. H. Renninger, P. Kharel.


  1. Department of Applied Physics, Yale University, New Haven, CT, USA

    • W. H. Renninger
    • , P. Kharel
    • , R. O. Behunin
    •  & P. T. Rakich


  1. Search for W. H. Renninger in:

  2. Search for P. Kharel in:

  3. Search for R. O. Behunin in:

  4. Search for P. T. Rakich in:


W.H.R. and P.T.R. conceived the device and spectroscopy approach. W.H.R. conducted experiments to produce the initial results. W.H.R. and P.K. jointly advanced these techniques to produce the final results under the guidance of P.T.R. W.H.R. and P.K. developed simulation methods with input from R.O.B. and P.T.R. P.K. and R.O.B. developed the analytical theory with guidance from W.H.R. and P.T.R. All authors participated in the writing of this manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to W. H. Renninger or P. T. Rakich.

Supplementary information

  1. Supplementary Information

    Supplementary notes, Supplementary Figures 1–18, Supplementary notes

About this article

Publication history




Issue Date


Further reading