Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The multiple directions of antiferromagnetic spintronics

New developments in spintronics based on antiferromagnetic materials show promise for improved fundamental understanding and applications in technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental antiferromagnetic memory device.

adapted from ref. 15, AIP (a); ref. 19, Macmillan Publishers Ltd (b); and ref. 11, AAAS (c)

Fig. 2: Antiferromagnetic anomalous Hall effect.

adapted from ref. 47, Macmillan Publishers Ltd

References

  1. 1.

    Chappert, C., Fert, A. & Van Dau, F. N. Nat. Mater. 6, 813–823 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Brataas, A., Kent, A. D. & Ohno, H. Nat. Mater. 11, 372–381 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Kent, A. D. & Worledge, D. C. Nat. Nanotech. 10, 187–191 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Waldrop, M. M. Nature 530, 144–147 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    MacDonald, A. H. & Tsoi, M. Philos. Trans. R. Soc. A 369, 3098–3114 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17–35 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Nat. Nanotech. 11, 231–241 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Baltz, V. et al. Preprint at https://arxiv.org/abs/1606.04284 (2016).

  9. 9.

    Wolf, S. A. et al. Science 294, 1488–1495 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    Néel, L. in Nobel Lectures, Physics 1963–1970 318–341 (Elsevier, Amsterdam, 1972).

  11. 11.

    Wadley, P. et al. Science 351, 587–591 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Marrows, C. Science 351, 558–559 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Pulizzi, F. Nat. Mater. 11, 367 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Sinova, J. & Jungwirth, T. Phys. Today 70, 38–42 (July, 2017).

    Article  Google Scholar 

  16. 16.

    Miron, I. M. et al. Nature 476, 189–193 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Liu, L. et al. Science 336, 555–558 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Olejník, K. et al. Nat. Commun. 8, 15434 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Bodnar, S. Yu. et al. Nat. Commun. 9, 348 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Meinert, M., Graulich, D. & Matalla-Wagner, T. Preprint at https://arxiv.org/abs/1706.06983 (2017).

  22. 22.

    Kriegner, D. et al. Nat. Commun. 7, 11623 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Borders, W. A. et al. Appl. Phys. Express 10, 013007 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Olejnik, K. et al. Preprint at https://arxiv.org/abs/1711.08444 (2017).

  25. 25.

    Garello, K. et al. Appl. Phys. Lett. 105, 212402 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Prenat, G. et al. IEEE Trans. Multi-Scale Comput. Sys 2, 49–60 (2016).

    Article  Google Scholar 

  27. 27.

    Roy, P., Otxoa, R. M. & Wunderlich, J. Phys. Rev. B 94, 014439 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Nature 429, 850–853 (2004).

    ADS  Article  Google Scholar 

  29. 29.

    Manz, S. et al. Nat. Photon. 10, 653–656 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Baierl, S. et al. Nat. Photon. 10, 715–718 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Bossini, D. et al. Nat. Commun. 7, 10645 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Saidl, V. et al. Nat. Photon. 11, 91–97 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Kittel, C. Phys. Rev. 82, 565–565 (1951).

    ADS  Article  Google Scholar 

  34. 34.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep. 6, 24795 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    Zhang, X., Ezawa, M. & Zhou, Y. Phys. Rev. B 94, 064406 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Nat. Phys. 12, 1100–1104 (2016).

    Article  Google Scholar 

  43. 43.

    Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Phys. Rev. Lett. 118, 106402 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Wang, Z. F. et al. Nat. Mater. 15, 968–973 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    Yang, H. et al. New J. Phys. 19, 015008 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Chen, H., Niu, Q. & MacDonald, A. H. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  Article  Google Scholar 

  47. 47.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Nature 527, 212–216 (2015).

    ADS  Article  Google Scholar 

  48. 48.

    Sürgers, C., Fischer, G., Winkel, P. & Löhneysen, H. V. Nat. Commun. 5, 3400 (2014).

    Article  Google Scholar 

  49. 49.

    Železný, J., Zhang, Y., Felser, C. & Yan, B. Phys. Rev. Lett. 119, 187204 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Park, B. G. et al. Nat. Mater. 10, 347–351 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the EU FET Open RIA Grant No. 766566, the Alexander von Humboldt Foundation, the Transregional Collaborative Research Center (SFB/TRR) No. 173 SPIN+X, the Grant Agency of the Czech Republic Grant No. 14-37427G, the Ministry of Education of the Czech Republic Grant Nos LM2015087 and LNSM-LNSpin, the ERC Synergy Grant No. 610115, and the King Abdullah University of Science and Technology Grant No. OSR-2015-CRG4-2626.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Jungwirth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jungwirth, T., Sinova, J., Manchon, A. et al. The multiple directions of antiferromagnetic spintronics. Nature Phys 14, 200–203 (2018). https://doi.org/10.1038/s41567-018-0063-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing