Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic antiferromagnetic spintronics

A Publisher Correction to this article was published on 18 June 2018

This article has been updated

Abstract

Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of synthetic antiferromagnets.

Change history

  • 18 June 2018

    Owing to a technical error, this Perspective was originally published without its received and accepted dates in the HTML version; the dates “Received: 30 May 2017; Accepted: 17 January 2018” have now been included. The PDF is correct.

References

  1. 1.

    Gruünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Phys. Rev. Lett. 57, 2442–2445 (1986).

    Article  ADS  Google Scholar 

  2. 2.

    Majkrzak, C. F. et al. Phys. Rev. Lett. 56, 2700–2703 (1986).

    Article  ADS  Google Scholar 

  3. 3.

    Salamon, M. B. et al. Phys. Rev. Lett. 56, 259–262 (1986).

    Article  ADS  Google Scholar 

  4. 4.

    Slonczewski, J. C. Phys. Rev. B 39, 6995–7002 (1989).

    Article  ADS  Google Scholar 

  5. 5.

    Parkin, S. S. P., More, N. & Roche, K. P. Phys. Rev. Lett. 64, 2304–2307 (1990).

    Article  ADS  Google Scholar 

  6. 6.

    Edwards, D. M., Mathon, J., Muniz, R. B. & Phan, M. S. Phys. Rev. Lett. 67, 493–496 (1991).

    Article  ADS  Google Scholar 

  7. 7.

    Bruno, P. Phys. Rev. B 52, 411–439 (1995).

    Article  ADS  Google Scholar 

  8. 8.

    Baibich, M. N. et al. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  9. 9.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Phys. Rev. B 39, 4828–4830 (1989).

    Article  ADS  Google Scholar 

  10. 10.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).

    Article  ADS  Google Scholar 

  11. 11.

    Valet, T. & Fert, A. Phys. Rev. B 48, 7099–7113 (1993).

    Article  ADS  Google Scholar 

  12. 12.

    Parkin, S. et al. Proc. IEEE 91, 661–679 (2003).

    Article  Google Scholar 

  13. 13.

    Bandiera, S. et al. IEEE Magn. Lett. 1, 3000204 (2010).

    Article  Google Scholar 

  14. 14.

    Smith, N., Maat, S., Carey, M. J. & Childress, J. R. Phys. Rev. Lett. 101, 247205 (2008).

    Article  ADS  Google Scholar 

  15. 15.

    Lee, S. W. & Lee, K. J. J. Appl. Phys. 109, 07C904 (2011).

    Article  Google Scholar 

  16. 16.

    Hayakawa, J. et al. Jpn J. Appl. Phys. 45, L1057–L1060 (2006).

    Article  Google Scholar 

  17. 17.

    Bergman, A. et al. Phys. Rev. B 83, 224429 (2011).

    Article  ADS  Google Scholar 

  18. 18.

    Houssameddine, D. et al. Appl. Phys. Lett. 96, 072511 (2010).

    Article  ADS  Google Scholar 

  19. 19.

    Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Nat. Nanotech. 11, 758–762 (2016).

    Article  ADS  Google Scholar 

  20. 20.

    Bi, C. et al. Phys. Rev. B 95, 104434 (2017).

    Article  ADS  Google Scholar 

  21. 21.

    Fechner, M., Zahn, P., Ostanin, S., Bibes, M. & Mertig, I. Phys. Rev. Lett. 108, 197206 (2012).

  22. 22.

    You, C.-Y. & Bader, S. D. J. Magn. Magn. Mater. 195, 488–500 (1999).

  23. 23.

    Newhouse-Illige, T. et al. Nat. Commun. 8, 15232 (2017).

    Article  ADS  Google Scholar 

  24. 24.

    Bender, S. A. & Tserkovnyak, Y. Phys. Rev. B 93, 064418 (2016).

    Article  ADS  Google Scholar 

  25. 25.

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Nat. Mater. 11, 391–399 (2012).

    Article  ADS  Google Scholar 

  26. 26.

    Takei, S. & Tserkovnyak, Y. Rev. Lett. 112, 227201 (2014).

    Article  ADS  Google Scholar 

  27. 27.

    Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).

    Article  ADS  Google Scholar 

  28. 28.

    Herranz, D. et al. Phys. Rev. B 79, 134423 (2009).

    Article  ADS  Google Scholar 

  29. 29.

    Saarikoski, H., Kohno, H., Marrows, C. H. & Tatara, G. Phys. Rev. B 90, 094411 (2014).

    Article  ADS  Google Scholar 

  30. 30.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

    Article  ADS  Google Scholar 

  31. 31.

    Komine, T. & Aono, T. AIP Adv. 6, 056409 (2016).

    Article  ADS  Google Scholar 

  32. 32.

    Lavrijsen, R. et al. Nature 493, 647–650 (2013).

    Article  ADS  Google Scholar 

  33. 33.

    Dzyaloshinskii, I. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  Google Scholar 

  34. 34.

    Moriya, T. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  35. 35.

    Roessler, U. K. & Bogdanov, A. N. Phys. Rev. B 69, 094405 (2004).

    Article  ADS  Google Scholar 

  36. 36.

    Zhang, X., Zhou, Y. & Ezawa, M. Nat. Commun. 7, 10293 (2015).

    Article  ADS  Google Scholar 

  37. 37.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  38. 38.

    Lan, J., Yu, W. & Xiao, J. Nat. Commun. 8, 178 (2017).

    Article  ADS  Google Scholar 

  39. 39.

    Marrows, C. Preprint at https://arxiv.org/abs/1611.00744 (2016).

  40. 40.

    Bhat, V. S., Heimbach, F., Stasinopoulos, I. & Grundler, D. Phys. Rev. B 93, 140401 (2016). (R).

    Article  ADS  Google Scholar 

  41. 41.

    Fert, A., Cros, V. & Sampaio, J. Nat. Nanotech. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.A.D. is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC), and is part of the D-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science. K.-J.L. was supported by the National Research Foundation of Korea (NRF) (NRF-2015M3D1A1070465, NRF-2017R1A2B2006119). This work was in part supported by EU FET Open RIA Grant no. 766566.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. A. Duine.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duine, R.A., Lee, KJ., Parkin, S.S.P. et al. Synthetic antiferromagnetic spintronics. Nature Phys 14, 217–219 (2018). https://doi.org/10.1038/s41567-018-0050-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing