Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antiferromagnetic spin textures and dynamics

Abstract

Antiferromagnets provide greater stability than their ferromagnetic counterparts, but antiferromagnetic spin textures and nanostructures also exhibit more complex, and often faster, dynamics, offering new functionalities for spintronics devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Torques and dynamics of antiferromagnets.
Fig. 2: Antiferromagnetic bits.

References

  1. 1.

    Wadley, P. et al. Science 351, 587–590 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Keffer, F. & Kittel, C. Phys. Rev. 85, 329–337 (1952).

    ADS  Article  Google Scholar 

  3. 3.

    Ross, P. et al. J. Appl. Phys. 118, 233907 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Hagiwara, M. & Katsumata, K. Int. J. Infrared Millim. Waves 20, 617–622 (1999).

    Article  Google Scholar 

  5. 5.

    Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Gomonay, H. & Loktev, V. J. Magn. Soc. Jpn 32, 535–539 (2008).

    Article  Google Scholar 

  9. 9.

    Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Phys. Rev. B 91, 064423 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Phys. Rev. Lett. 113, 057601 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Cheng, R., Xiao, D. & Brataas, A. Phys. Rev. Lett. 116, 207603 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Science 335, 196–199 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Bode, M. et al. Nat. Mater. 5, 477–481 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Nat. Phys. https://doi.org/s41567-018-0064-5 (2018).

  17. 17.

    Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep 6, 24795 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Raičević, I. et al. Phys. Rev. Lett. 106, 227206 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Brataas, A., Skarsvåg, H., Tveten, E. G. & Fjærbu, E. L. Phys. Rev. B 92, 180414(R) (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Rodrigues, D. R., Everschor-Sitte, K., Tretiakov, O. A., Sinova, J. & Abanov, A. Phys. Rev. B 95, 174408 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Phys. Rev. Lett. 112, 147204 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Phys. Rev. B 90, 104406 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Velkov, H. et al. New J. Phys. 18, 075016 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Wang, H., Du, C., Hammel, P. C. & Yang, F. Phys. Rev. Lett. 113, 097202 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Moriyama, T. et al. Preprint at https://arxiv.org/abs/1411.4100 (2014).

  29. 29.

    Merodio, P. et al. Appl. Phys. Lett. 104, 032406 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Frangou, L. et al. Phys. Rev. Lett. 116, 077203 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Moriyama, T. et al. Appl. Phys. Lett. 106, 162406 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Lin, W., Chen, K., Zhang, S. & Chien, C. L. Phys. Rev. Lett. 116, 186601 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Phys. Rev. B 93, 054412 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Saglam, H. et al. Phys. Rev. B 94, 140412(R) (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Wu, S. M. et al. Phys. Rev. Lett. 116, 097204 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Seki, S. et al. Phys. Rev. Lett. 115, 266601 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Qiu, Z. et al. Nat. Commun. 7, 12670 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Phys. Rev. B 93, 224421 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Takei, S., Moriyama, T., Ono, T. & Tserkovnyak, Y. Phys. Rev. B 92, 020409 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

O.G. acknowledges the Alexander von Humboldt Foundation, the ERC Synergy Grant SC2 (no. 610115), EU FET Open RIA Grant no. 766566, and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X. A.B. acknowledges the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633 ‘QuSpin’ and the European Research Council via Advanced Grant no. 669442 ‘Insulatronics’. V.B. acknowledges the financial support of ANR (ANR-15-CE24-0015-01) and of KAUST (OSR-2015-CRG4-2626). Y.T. acknowledges FAME (an SRC STARnet centre sponsored by MARCO and DARPA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Gomonay.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomonay, O., Baltz, V., Brataas, A. et al. Antiferromagnetic spin textures and dynamics. Nature Phys 14, 213–216 (2018). https://doi.org/10.1038/s41567-018-0049-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing