Wall roughness induces asymptotic ultimate turbulence

Abstract

Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor–Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Plume structures for smooth and rough Taylor-Couette turbulence.
Fig. 2: Global torque and friction factor scaling relations.
Fig. 3: Optimal transport peaks for smooth and rough cases.
Fig. 4: Local energy dissipation rate from simulations.
Fig. 5: Mean velocity profiles.
Fig. 6: Dependence on the roughness sparseness.

References

  1. 1.

    Nikuradse, J. Strömungsgesetze in rauhen Rohren. Forschung. Arb. Ing. Wes. 361, (1933).

  2. 2.

    Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow. J. Fluid. Mech. 728, 376–395 (2013).

    ADS  Article  MATH  Google Scholar 

  3. 3.

    Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid. Mech. 771, 743–777 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A. A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid. Mech. 773, 418–431 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Squire, D. T. et al. Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid. Mech. 795, 210–240 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Jiménez, J. Turbulent flows of rough walls. Ann. Rev. Fluid Mech. 36, 173–196 (2004).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Flack, K. A. & Schultz, M. P. Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Pope, S. B. Turbulent Flow. (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  9. 9.

    Schlichting, H. & Gersten, K. Boundary Layer Theory 8th edn (Springer, Berlin, 2000).

    Google Scholar 

  10. 10.

    Grossmann, S., Lohse, D. & Sun, C. High Reynolds number Taylor-Couette turbulence. Ann. Rev. Fluid Mech. 48, 53–80 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Eckhardt, B., Grossmann, S. & Lohse, D. Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders. J. Fluid. Mech. 581, 221–250 (2007).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Ahlers, G., Grossmann, S. & Lohse, D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Lohse, D. & Xia, K.-Q. Small-scale properties of turbulent Rayleigh-Bénard convection. Ann. Rev. Fluid Mech. 42, 335–364 (2010).

    ADS  Article  MATH  Google Scholar 

  14. 14.

    Kraichnan, R. H. Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 1374–1389 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Chavanne, X. et al. Observation of the ultimate regime in Rayleigh-Bénard convection. Phys. Rev. Lett. 79, 3648–3651 (1997).

    ADS  Article  Google Scholar 

  16. 16.

    He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 108, 024502 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    He, X., Funfschilling, D., Bodenschatz, E. & Ahlers, G. Heat transport by turbulent Rayleigh-Bénard convection for Pr = 0.8 and 4 × 1011 < Ra < 2 × 1014: ultimate-state transition for aspect ratio Γ = 1.00. New. J. Phys. 14, 063030 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D. Ultimate turbulent Taylor-Couette flow. Phys. Rev. Lett. 108, 024501 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. Exploring the phase diagram of fully turbulent Taylor-Couette flow. J. Fluid. Mech. 761, 1–26 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Grossmann, S. & Lohse, D. Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. The near-wall region of highly turbulent Taylor-Couette flow. J. Fluid. Mech. 788, 95–117 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Doering, C. & Constantin, P. Variational bounds on energy dissipation in incompressible flows: III. Convection. Phys. Rev. E 53, 5957–5981 (1996).

    ADS  Article  Google Scholar 

  23. 23.

    Nicodemus, R., Grossmann, S. & Holthaus, M. Variational bound on energy dissipation in turbulent shear flow. Phys. Rev. Lett. 79, 4170 (1997).

    ADS  Article  MATH  Google Scholar 

  24. 24.

    Plasting, S. C. & Kerswell, R. R. Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse’s problem and the Constantin-Doering-Hopf problem with one-dimensional background field. J. Fluid. Mech. 477, 363–379 (2003).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Toppaladoddi, S., Succi, S. & Wettlaufer, J. S. Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118, 074503 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Xie, Y.-C. & Xia, K.-Q. Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid. Mech. 825, 573–599 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Zhu, X., Stevens, R. A. J. M., Verzicco, R. & Lohse, D. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119, 154501 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Lohse, D. & Toschi, F. The ultimate state of thermal convection. Phys. Rev. Lett. 90, 034502 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Gibert, M., Pabiou, H., Chilla, F. & Castaing, B. High-Rayleigh-number convection in a vertical channel. Phys. Rev. Lett. 96, 084501 (2006).

    ADS  Article  Google Scholar 

  30. 30.

    Cholemari, M. & Arakeri, J. Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe. J. Fluid. Mech. 621, 69–102 (2009).

    ADS  Article  MATH  Google Scholar 

  31. 31.

    von Kármán, T. Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921).

    Article  MATH  Google Scholar 

  32. 32.

    Lathrop, D. P., Fineberg, J. & Swinney, H. S. Turbulent flow between concentric rotating cylinders at large Reynolds numbers. Phys. Rev. Lett. 68, 1515–1518 (1992).

    ADS  Article  Google Scholar 

  33. 33.

    Huisman, S. G. et al. Logarithmic boundary layers in strong Taylor-Couette turbulence. Phys. Rev. Lett. 110, 264501 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow. Phys. Fluids 26, 015114 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Shen, Y., Tong, P. & Xia, K.-Q. Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908–911 (1996).

    ADS  Article  Google Scholar 

  36. 36.

    Du, Y. B. & Tong, P. Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid. Mech. 407, 57–84 (2000).

    ADS  Article  MATH  Google Scholar 

  37. 37.

    Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. Observation of the 1/2 power law in Rayleigh-Bénard convection. Phys. Rev. E 63, 045303 (2001).

    ADS  Article  Google Scholar 

  38. 38.

    van den Berg, T. H., Doering, C., Lohse, D. & Lathrop, D. Smooth and rough boundaries in turbulent Taylor-Couette flow. Phys. Rev. E 68, 036307 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Tisserand, J. C. et al. Comparison between rough and smooth plates within the same Rayleigh-Bénard cell. Phys. Fluids 23, 015105 (2011).

    ADS  Article  Google Scholar 

  40. 40.

    Wei, P., Chan, T.-S., Ni, R., Zhao, X.-Z. & Xia, K.-Q. Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid. Mech. 740, 28–46 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    van Gils, D. P. M., Huisman, S. G., Bruggert, G. W., Sun, C. & Lohse, D. Torque scaling in turbulent Taylor-Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Brauckmann, H. J. & Eckhardt, B. Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re = 30 000. J. Fluid. Mech. 718, 398–427 (2013).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Grossmann, S., Lohse, D. & Sun, C. Velocity profiles in strongly turbulent Taylor-Couette flow. Phys. Fluids 26, 025114 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Lewis, G. S. & Swinney, H. L. Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow. Phys. Rev. E 59, 5457–5467 (1999).

    ADS  Article  Google Scholar 

  45. 45.

    Zhu, X., Verzicco, R. & Lohse, D. Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence. J. Fluid. Mech. 812, 279–293 (2017).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Moody, L. F. Friction factors for pipe flow. Trans. ASME 66, 671–684 (1944).

    Google Scholar 

  47. 47.

    Taylor, G. I. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. A 223, 289–343 (1923).

    ADS  Article  MATH  Google Scholar 

  48. 48.

    Brauckmann, H. J. & Eckhardt, B. Intermittent boundary layers and torque maxima in Taylor-Couette flow. Phys. Rev. E 87, 033004 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D. Multiple states in highly turbulent Taylor-Couette flow. Nat. Commun. 5, 3820 (2014).

    Article  Google Scholar 

  50. 50.

    van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D. Optimal Taylor-Couette turbulence. J. Fluid. Mech. 706, 118–149 (2012).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Chouippe, A., Climent, E., Legendre, D. & Gabillet, C. Numerical simulation of bubble dispersion in turbulent Taylor-Couette flow. Phys. Fluids 26, 043304 (2014).

    ADS  Article  Google Scholar 

  52. 52.

    Martínez-Arias, B., Peixinho, J., Crumeyrolle, O. & Mutabazi, I. Effect of the number of vortices on the torque scaling in Taylor-Couette flow. J. Fluid. Mech. 748, 756–767 (2014).

    ADS  Article  Google Scholar 

  53. 53.

    Grossmann, S. & Lohse, D. Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 27–56 (2000).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Grossmann, S. & Lohse, D. Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 3316–3319 (2001).

    ADS  Article  Google Scholar 

  55. 55.

    Shang, X. D., Tong, P. & Xia, K.-Q. Scaling of the local convective heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 100, 244503 (2008).

    ADS  Article  Google Scholar 

  56. 56.

    Ni, R., Huang, S.-D. & Xia, K.-Q. Local energy dissipation rate balances local heat flux in the center of turbulent thermal convection. Phys. Rev. Lett. 107, 174503 (2011).

    ADS  Article  Google Scholar 

  57. 57.

    van Gils, D. P. M., Bruggert, G. W., Lathrop, D. P., Sun, C. & Lohse, D. The Twente turbulent Taylor-Couette (T3C) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instr. 82, 025105 (2011).

    ADS  Article  Google Scholar 

  58. 58.

    Verzicco, R. & Orlandi, P. A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402–413 (1996).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. 59.

    Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. 60.

    Yang, J. & Balaras, E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215, 12–40 (2006).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. 61.

    van der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. A pencil distributed finite difference code for strongly turbulent wall-bounded flows.Comput. Fluids 116, 10–16 (2015).

    MathSciNet  Article  Google Scholar 

  62. 62.

    Avila, M. Stability and angular-momentum transport of fluid flows between co-rotating cylinders. Phys. Rev. Lett. 108, 124501 (2012).

    ADS  Article  Google Scholar 

  63. 63.

    Ostilla-Mónico, R., Verzicco, R. & Lohse, D. Effects of the computational domain size on direct numerical simulations of Taylor-Couette turbulence with stationary outer cylinder. Phys. Fluids 27, 025110 (2015).

    ADS  Article  Google Scholar 

  64. 64.

    Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, Oxford, 1987).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge V. Mathai for insightful discussions. We thank G. W. Bruggert and M. Bos, as well as G. Mentink and R. Nauta, for their technical support and D.P.M. van Gils and R. Ezeta for various discussions and help with the experiments. The work is financially supported by NWO-I, NWO-TTW, the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), and a VIDI grant (No. 13477), all sponsored by the Netherlands Organisation for Scientific Research (NWO). C.S. acknowledges the financial support from Natural Science Foundation of China under Grant No. 11672156. Part of the simulations were carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. We also acknowledge PRACE for awarding us access to Marconi at CINECA, Italy under PRACE project number 2016143351 and DECI resource ARCHER UK National Supercomputing Service with the support from PRACE under project 13DECI0246.

Author information

Affiliations

Authors

Contributions

X.Z., S.G.H., R.A.V., R.V., C.S. and D.L. conceived the ideas. X.Z. performed the numerical simulations. R.A.V. and D.B. performed the measurements. X.Z. and R.A.V. analysed the data. X.Z., R.A.V. and D.L. wrote the paper. R.V., C.S. and D.L. supervised the project. All authors discussed the physics and proofread the paper.

Corresponding authors

Correspondence to Chao Sun or Detlef Lohse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures S1–S5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Verschoof, R.A., Bakhuis, D. et al. Wall roughness induces asymptotic ultimate turbulence. Nature Phys 14, 417–423 (2018). https://doi.org/10.1038/s41567-017-0026-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing