Letter | Published:

Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures

Nature Physicsvolume 14pages396398 (2018) | Download Citation


The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma1. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV γ-rays are comparable, which hints at a grand unified picture2. Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and γ-rays; the highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi γ-ray background, assuming a reasonable energy output from black hole jets in clusters.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Linsley, J. Evidence for a primary cosmic-ray particle with energy 1020 eV. Phys. Rev. Lett. 10, 146–148 (1963).

  2. 2.

    Murase, K. & Waxman, E. Constraining high-energy cosmic neutrino sources: Implications and prospects. Phys. Rev. D 94, 103006 (2016).

  3. 3.

    Hillas, A. M. The origin of ultra-high-energy cosmic rays. Ann. Rev. Astron. Astrophys. 22, 425–444 (1984).

  4. 4.

    Aab, A. et al. Contributions to the 34th International Cosmic Ray Conference. in Proc. Sci. (ICRC 2015) (2015).

  5. 5.

    Charles, J. et al. Summary of results from the Telescope Array Experiment. in Proc. Sci. (ICRC2015) 035 (2015).

  6. 6.

    Halzen, F. High-energy neutrino astrophysics. Nat. Phys. 13, 232–238 (2016).

  7. 7.

    Aartsen, M. et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013).

  8. 8.

    Aartsen, M. G. et al. Observation and characterization of a cosmic muon neutrino flux from the northern hemisphere using six years of IceCube data. Astrophys. J. 833, 3–21 (2016).

  9. 9.

    Aartsen, M. G. et al. Observation of astrophysical neutrinos in six years of IceCube data. in Proc. Sci. (ICRC2017) 981 (2017).

  10. 10.

    Murase, K., Inoue, S. & Nagataki, S. Cosmic rays above the second knee from clusters of galaxies and associated high-energy neutrino emission. Astrophys. J. 689, L105–L108 (2008).

  11. 11.

    Kotera, K. et al. Propagation of ultrahigh energy nuclei in clusters of galaxies: resulting composition and secondary emissions. Astrophys. J. 707, 370–386 (2009).

  12. 12.

    Loeb, A. & Waxman, E. The cumulative background of high energy neutrinos from starburst galaxies. J. Cosmol. Astropart. Phys. 0605, 003 (2006).

  13. 13.

    Murase, K., Ahlers, M. & Lacki, B. C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D 88, 121301 (2013).

  14. 14.

    Ackermann, M. et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86–110 (2015).

  15. 15.

    Ackermann, M. et al. Resolving the extragalactic γ -ray background above 50 GeV with the fermi large area telescope. Phys. Rev. Lett. 116, 151105 (2016).

  16. 16.

    Apel, W. D. et al. KASCADE-grande measurements of energy spectra for elemental groups of cosmic rays. Astropart. Phys. 47, 54–66 (2013).

  17. 17.

    Buitink, S. et al. A large light-mass component of cosmic rays at 1017–1017.5 eV from radio observations. Nature 531, 70–73 (2016).

  18. 18.

    Aartsen, M. G. et al. Constraints on ultrahigh-energy cosmic-ray sources from a search for neutrinos above 10 PeV with IceCube. Phys. Rev. Lett. 117, 241101 (2016).

  19. 19.

    Murase, K., Dermer, C. D., Takami, H. & Migliori, G. Blazars as ultra-high-energy cosmic-ray sources: implications for TeV gamma-ray observations. Astrophys. J. 749, 63–78 (2012).

  20. 20.

    Kaiser, C. R. & Best, P. N. Luminosity function, sizes and FR dichotomy of radio-loud AGN. Mon. Not. R. Astron. Soc. 381, 1548–1560 (2007).

  21. 21.

    Kataoka, J. & Stawarz, Ł. X-ray emission properties of large-scale jets, hot spots, and lobes in active galactic nuclei. Astrophys. J. 622, 797–810 (2005).

  22. 22.

    Bordas, P., Bosch-Ramon, V. & Perucho, M. The evolution of the large-scale emission in Fanaroff-Riley type I jets. Mon. Not. R. Astron. Soc. 412, 1229–1236 (2011).

  23. 23.

    Best, P. N., von der Linden, A., Kauffmann, G., Heckman, T. M. & Kaiser, C. R. On the prevalence of radio-loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows. Mon. Not. R. Astron. Soc. 379, 894–908 (2007).

  24. 24.

    Brunetti, G. & Jones, T. W. Cosmic rays in galaxy clusters and their nonthermal Emission. Int. J. Mod. Phys. D 23, 1430007–1430098 (2014).

  25. 25.

    Zandanel, F., Tamborra, I., Gabici, S. & Ando, S. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints. Astron. Astrophys. 578, 1–13 (2015).

  26. 26.

    Ma, C.-J., McNamara, B. R., Nulsen, P. E. J., Schaffer, R. & Vikhlinin, A. Average heating rate of hot atmospheres in distant clusters by radio active galactic nucleus: evidence for continuous active galactic nucleus heating. Astrophys. J. 740, 51–61 (2011).

  27. 27.

    Abreu, P. et al. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 1305, 009 (2013).

  28. 28.

    Verzi, V., Ivanov, D. & Tsunesada, Y. Measurement of energy spectrum of ultra-high energy cosmic rays. Preprint at http://arxiv.org/abs/1705.09111 (2017).

  29. 29.

    Murase, K. & Beacom, J. F. Neutrino background flux from sources of ultrahigh-energy cosmic-ray nuclei. Phys. Rev. D 81, 123001 (2010).

  30. 30.

    De Domenico, M., Settimo, M., Riggi, S. & Bertin, E. Reinterpreting the development of extensive air showers initiated by nuclei and photons. J. Cosmol. Astropart. Phys. 1307, 050 (2013).

Download references


We thank R. Alves Batista, M. Bustamante, M. Coleman Miller, C. Reynolds and M. Unger for helpful comments. This work made use of supercomputing resources at the University of Maryland. We gratefully acknowledge support from the Eberly College of Science of Penn State University and the Institute for Gravitation and the Cosmos. The work of K.M. is supported by Alfred P. Sloan Foundation and NSF grant No. PHY-1620777.

Author information


  1. Department of Astronomy, Joint Space-Science Institute, University of Maryland, College Park, MD, USA

    • Ke Fang
  2. Department of Physics, Pennsylvania State University, University Park, PA, USA

    • Kohta Murase
  3. Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, USA

    • Kohta Murase
  4. Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA, USA

    • Kohta Murase
  5. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan

    • Kohta Murase


  1. Search for Ke Fang in:

  2. Search for Kohta Murase in:


K.F. performed simulations and produced the figures. K.M. designed the research and contributed to the calculations. Both authors edited the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kohta Murase.

Supplementary Information

  1. Supplementary Information

    Supplementary Information

About this article

Publication history




Issue Date



Further reading