Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-component fermions with surface Fermi arcs in tungsten carbide

Abstract

Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have a non-trivial band topology manifested by gapless surface states, which induce exotic surface Fermi arcs1,2. Recent advances suggest new types of topological semimetal, in which spatial symmetries protect gapless electronic excitations without high-energy analogues3,4,5,6,7,8,9,10,11. Here, using angle-resolved photoemission spectroscopy, we observe triply degenerate nodal points near the Fermi level of tungsten carbide with space group \(P\bar{6}m2\) (no. 187), in which the low-energy quasiparticles are described as three-component fermions distinct from Dirac and Weyl fermions. We further observe topological surface states, whose constant-energy contours constitute pairs of ‘Fermi arcs’ connecting to the surface projections of the triply degenerate nodal points, proving the non-trivial topology of the newly identified semimetal state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electronic structure of TPs in WC.
Fig. 2: FSs in the (001) and (100) planes of WC.
Fig. 3: Band dispersions near TP no. 1.
Fig. 4: SSs on the (100) surface of WC.

References

  1. 1.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353, 558 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Heikkilä, T. T. & Volovik, G. E. Nexus and Dirac lines in topological materials. New J. Phys. 17, 093019 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Weng, H., Fang, C., Fang, Z. & Dai, X. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 93, 241202 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Zhu, Z., Winkler, G. W., Wu, Q., Li, J. & Soluyanov, A. A. Triple point topological metals. Phys. Rev. X 6, 031003 (2016).

    Google Scholar 

  8. 8.

    Weng, H., Fang, C., Fang, Z. & Dai, X. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys. Rev. B 94, 165201 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Chang, G. et al. Nexus fermions in topological symmorphic crystalline metals. Sci. Rep. 7, 1688 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Chang, G. et al. Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

  11. 11.

    Tang, P., Zhou, Q. & Zhang, S. C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

  12. 12.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    ADS  Article  Google Scholar 

  15. 15.

    Weng, H. M., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  16. 16.

    Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  Google Scholar 

  17. 17.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Chang, G. et al. Kramers–Weyl fermions. Preprint at https://arxiv.org/abs/1611.07925 (2016).

  19. 19.

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal Na3Bi. Science 343, 864–867 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  21. 21.

    Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  23. 23.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  24. 24.

    Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Kargarian, M., Randeria, M. & Lu, Y.-M. Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl Acad. Sci. USA 113, 8648–8652 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Fang, C., Lu, L., Liu, J. & Fu, L. Topological semimetals with helicoid surface states. Nat. Phys. 12, 936–941 (2016).

    Article  Google Scholar 

  28. 28.

    Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Shekhar, C. et al. Extremely high conductivity observed in the unconventional triple point fermion material MoP. Preprint at https://arxiv.org/abs/1703.03736 (2017).

  30. 30.

    He, J. B. et al. Magnetotransport properties of the triply degenerate node topological semimetal tungsten carbide. Phys. Rev. B 95, 195165 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  33. 33.

    Strocov, V. N. et al. Three-dimensional electron realm in VSe2 by soft X-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).

    Book  Google Scholar 

  35. 35.

    Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Article  Google Scholar 

  36. 36.

    Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS  Article  Google Scholar 

  37. 37.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  38. 38.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  Article  Google Scholar 

  39. 39.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  40. 40.

    Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    ADS  Article  Google Scholar 

Download references

Acknowl1edgements

We acknowledge G. Li for valuable discussion. This work was supported by the Ministry of Science and Technology of China (2016YFA0300600, 2016YFA0401000, 2016YFA0302400, 2015CB921300, 2013CB921700, 2016YFA0202301 and 2016YFA0300300), the National Natural Science Foundation of China (11622435, 11474340, 11422428, 11674369, 11234014, 11404175, 61725107 and 11674371) and the Chinese Academy of Sciences (XDB07000000 and XDB06). Y.-B.H. acknowledges funding from the CAS Pioneer Hundred Talents Program (type C). A portion of this work performed at the National High Magnetic Field Laboratory, Tallahassee, USA, is supported by the National Science Foundation Cooperative Agreement DMR-1157490 and the State of Florida.

Author information

Affiliations

Authors

Contributions

H.D. and T.Q. conceived the ARPES experiments; J.-Z.M. and T.Q. performed ARPES measurements with the assistance of B.-Q.L., L.-Y.K., X.G., L.-Y.R. and Y.-B.H.; Y.-F.X. and H.-M.W. performed ab initio calculations; J.-B.H., D.C., W.-L.Z. and G.-F.C. synthesized the single crystals; S.Z., D.C., C.-Y.X., E.S.C. and G.-F.C. performed quantum oscillation measurements; J.-Z.M., T.Q. and H.D. analysed the experimental data; J.-Z.M., Y.-F.X., T.Q. and J.-B.H. plotted the figures; X.D. discussed the experimental and calculated data; Y.S., J.-Z.M., Y.-L.W. and H.-J.G. performed STM experiments. T.Q., C.F., H.-M.W., H.D., J.-Z.M. and P.R. wrote the manuscript.

Corresponding authors

Correspondence to G.-F. Chen, T. Qian or H. Ding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figures 1–3, Supplementary Table, References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, JZ., He, JB., Xu, YF. et al. Three-component fermions with surface Fermi arcs in tungsten carbide. Nature Phys 14, 349–354 (2018). https://doi.org/10.1038/s41567-017-0021-8

Download citation

Further reading

Search

Quick links