Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signatures of a dissipative phase transition in photon correlation measurements

Abstract

Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1,2,3,4,5,6,7,8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12,13,14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up and cavity transmission spectrum.
Fig. 2: Dynamical bistability in cavity transmission.
Fig. 3: Non-equilibrium dynamics in the strong fluctuation regime.
Fig. 4: Liouvillian gap scaling with drive strength.

Similar content being viewed by others

References

  1. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008).

    Article  Google Scholar 

  2. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).

    Article  Google Scholar 

  3. Diehl, S., Tomadin, A., Micheli, A., Fazio, R. & Zoller, P. Dynamical phase transitions and instabilities in open atomic many-body systems. Phys. Rev. Lett. 105, 015702 (2010).

    Article  ADS  Google Scholar 

  4. Le Boité, A., Orso, G. & Ciuti, C. Steady-state phases and tunneling-induced instabilities in the driven dissipative bose-hubbard model. Phys. Rev. Lett. 110, 233601 (2013).

    Article  ADS  Google Scholar 

  5. Carmichael, H. J. Breakdown of photon blockade: a dissipative quantum phase transition in zero dimensions. Phys. Rev. X 5, 031028 (2015).

    Google Scholar 

  6. Fink, J. M., Dombi, A., Vukics, A., Wallra, A. & Domokos, P. Observation of the photon-blockade breakdown phase transition. Phys. Rev. X 7, 011012 (2017).

    Google Scholar 

  7. Wilson, R. M. et al. Collective phases of strongly interacting cavity photons. Phys. Rev. A 94, 033801 (2016).

    Article  ADS  Google Scholar 

  8. Biondi, M., Blatter, G., Türeci, H. E. & Schmidt, S. Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice. Phys. Rev. A 96, 043809 (2017).

    Article  ADS  Google Scholar 

  9. Kessler, E. M. et al. Dissipative phase transition in a central spin system. Phys. Rev. A 86, 012116 (2012).

    Article  ADS  Google Scholar 

  10. Baas, A., Karr, J. P., Eleuch, H. & Giacobino, E. Optical bistability in semiconductor microcavities. Phys. Rev. A 69, 023809 (2004).

    Article  ADS  Google Scholar 

  11. Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014).

    Article  Google Scholar 

  12. Drummond, P. D. & Walls, D. F. Quantum theory of optical bistability. I. Nonlinear polarisability model. J. Phys. A. Math. Gen. 13, 725–741 (1980).

    Article  ADS  Google Scholar 

  13. Casteels, W., Storme, F., Le Boité, A. & Ciuti, C. Power laws in the dynamic hysteresis of quantum nonlinear photonic resonators. Phys. Rev. A 93, 033824 (2016).

    Article  ADS  Google Scholar 

  14. Casteels, W., Fazio, R. & Ciuti, C. Critical dynamical properties of a first-order dissipative phase transition. Phys. Rev. A 95, 012128 (2017).

    Article  ADS  Google Scholar 

  15. Gibbs, H. M., McCall, S. L. & Venkatesan, T. N. C. Differential gain and bistability using a sodium-filled Fabry-Perot interferometer. Phys. Rev. Lett. 36, 1135–1138 (1976).

    Article  ADS  Google Scholar 

  16. Almeida, V. R. & Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 29, 2387–2389 (2004).

    Article  ADS  Google Scholar 

  17. Wurtz, G. A., Pollard, R. & Zayats, A. V. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys. Rev. Lett. 97, 057402 (2006).

    Article  ADS  Google Scholar 

  18. Kheruntsyan, K. V. Wigner function for a driven anharmonic oscillator. J. Opt. B 1, 225–233 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  19. Risken, H., Savage, C., Haake, F. & Walls, D. F. Quantum tunneling in dispersive optical bistability. Phys. Rev. A 35, 1729–1739 (1987).

    Article  ADS  Google Scholar 

  20. Lett, P., Christian, W., Singh, S. & Mandel, L. Macroscopic quantum fluctuations and first-order phase transition in a laser. Phys. Rev. Lett. 47, 1892–1895 (1981).

    Article  ADS  Google Scholar 

  21. Letscher, F., Thomas, O., Niederprüm, T., Fleischhauer, M. & Ott, H. Bistability versus metastability in driven dissipative Rydberg gases. Phys. Rev. X 7, 021020 (2017).

    Google Scholar 

  22. Rodriguez, S. R. K. et al. Probing a dissipative phase transition via dynamical optical hysteresis. Phys. Rev. Lett. 118, 247402 (2017).

    Article  ADS  Google Scholar 

  23. Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  24. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  25. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    Article  ADS  Google Scholar 

  26. Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  27. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  Google Scholar 

  28. Hartmann, M. J. Quantum simulation with interacting photons. J. Optics 18, 104005 (2016).

    Article  ADS  Google Scholar 

  29. Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2017).

    Article  ADS  Google Scholar 

  30. Carusotto, I. Linear and Nonlinear Optics in Bose Fields: Light Waves in Dielectric Structures, Matter Waves in Optical Lattices PhD thesis, Scuola Normale Superiore di Pisa (2000).

  31. Goldsztein, G. H., Broner, F. & Strogatz, S. H. Dynamical hysteresis without static hysteresis: scaling laws and asymptotic expansions. SIAM. J. Appl. Math. 57, 1163–1187 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  32. Sachdev, S. Quantum Phase Transitions. 2nd edn, (Cambridge Univ. Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  33. Jin, J., Rossini, D., Leib, M., Hartmann, M. J. & Fazio, R. Steady-state phase diagram of a driven QED-cavity array with cross-Kerr nonlinearities. Phys. Rev. A 90, 023827 (2014).

    Article  ADS  Google Scholar 

  34. Mendoza-Arenas, J. J. et al. Beyond mean-field bistability in driven-dissipative lattices: bunching-antibunching transition and quantum simulation. Phys. Rev. A 93, 023821 (2016).

    Article  ADS  Google Scholar 

  35. Foss-Feig, M. et al. Emergent equilibrium in many-body optical bistability. Phys. Rev. A 95, 043826 (2017).

    Article  ADS  Google Scholar 

  36. Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Reinhard, T. Volz and J. Reichel for early work that led to the development of the semiconductor fibre cavity structure used in this work. We also acknowledge fruitful discussions with C. Ciuti and S. Zeytinoğlu. This work was supported by the Swiss National Science Foundation (SNSF) through the National Centre of Competence in Research - Quantum Science and Technology (NCCR QSIT). A.S., C.S. and S.H. acknowledge support by the State of Bavaria and the Deutsche Forschungsgemeinschaft within the Project Schn1376/3–1.

Author information

Authors and Affiliations

Authors

Contributions

T.F. and A.I. designed and supervised the experiment. T.F. carried out the measurements. A.S., S.H., and C.S. grew the sample. T.F. and A.I. wrote the manuscript.

Corresponding author

Correspondence to Thomas Fink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary figure 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, T., Schade, A., Höfling, S. et al. Signatures of a dissipative phase transition in photon correlation measurements. Nature Phys 14, 365–369 (2018). https://doi.org/10.1038/s41567-017-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0020-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing