Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super-resolved FRET and co-tracking in pMINFLUX

Abstract

Single-molecule fluorescence resonance energy transfer (smFRET) is widely used to investigate dynamic (bio)molecular interactions occurring over distances of up to 10 nm. Recent advances in super-resolution methods have brought their spatiotemporal resolution closer towards the smFRET regime. Although these methods do not suffer from the spatial restrictions of FRET, they only visualize one emitter at a time, thus making it difficult to capture fast dynamics of the interactions. Here we describe two approaches to overcome this limitation in pulsed-interleaved MINFLUX (pMINFLUX) microscopy by using its intrinsic fluorescence lifetime information. First we combine pMINFLUX with smFRET, which enables tracking a FRET donor with nanometre precision while simultaneously determining its distance to a FRET acceptor, yielding the acceptor position by multilateration. Second, we developed pMINFLUX lifetime multiplexing—a method that simultaneously tracks two fluorophores with similar spectral properties but distinct fluorescence lifetimes—to extend co-localized tracking beyond the FRET range. We demonstrate applications on DNA origami systems as well as by imaging the paratopes of an antibody with precision better than 2 nm, paving the way for nanometre precise co-localized tracking for inter-dye distances between 4 nm and 100 nm, and closing the resolution gap between smFRET and co-tracking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Super-resolved FRET in pMINFLUX.
Fig. 2: pMINFLUX lifetime multiplexing principle and accuracy.
Fig. 3: Applying pMINFLUX lifetime multiplexing to investigate molecular interactions.
Fig. 4: pMINFLUX lifetime multiplexing within the FRET range.

Similar content being viewed by others

Data availability

All data are available from the corresponding author on reasonable request.

Code availability

Codes used in this study are available from the corresponding author on reasonable request.

References

  1. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robinson, A. & van Oijen, A. M. Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat. Rev. Microbiol. 11, 303–315 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Stracy, M., Uphoff, S., Garza de Leon, F. & Kapanidis, A. N. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett. 588, 3585–3594 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Alhadid, Y. et al. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence. Protein Sci. 26, 1278–1290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blanchard, S. C. Single-molecule observations of ribosome function. Curr. Opin. Struct. Biol. 19, 103–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Munro, J. B., Vaiana, A., Sanbonmatsu, K. Y. & Blanchard, S. C. A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET. Biopolymers 89, 565–577 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gambin, Y. & Deniz, A. A. Multicolor single-molecule FRET to explore protein folding and binding. Mol. Biosyst. 6, 1540–1547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sasmal, D. K., Pulido, L. E., Kasal, S. & Huang, J. Single-molecule fluorescence resonance energy transfer in molecular biology. Nanoscale 8, 19928–19944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weikl, T. R. & Paul, F. Conformational selection in protein binding and function. Protein Sci. 23, 1508–1518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Winckler, P. et al. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells. Sci. Rep. 3, 2387 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Asher, W. B. et al. Single-molecule FRET imaging of GPCR dimers in living cells. Nat. Methods 18, 397–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mieskes, F., Ploetz, E., Wehnekamp, F., Rat, V. & Lamb, D. C. Multicolor 3D orbital tracking. Small 19, e2204726 (2023).

    Article  PubMed  Google Scholar 

  15. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Masullo, L. A. et al. Pulsed Interleaved MINFLUX. Nano Lett. 21, 840–846 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Weber, M. et al. MINSTED fluorescence localization and nanoscopy. Nat. Photonics 15, 361–366 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Masullo, L. A. et al. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light Sci. Appl. 11, 199 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Stefani, F. D. Tracking nanoscopic motion with minima of light. Nat. Photon. 17, 552–553 (2023).

    Article  CAS  ADS  Google Scholar 

  21. Deguchi, T. et al. Direct observation of motor protein stepping in living cells using MINFLUX. Science 379, 1010–1015 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Eilers, Y., Ta, H., Gwosch, K. C., Balzarotti, F. & Hell, S. W. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl Acad. Sci. USA 115, 6117–6122 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Ostersehlt, L. M. et al. DNA-PAINT MINFLUX nanoscopy. Nat. Methods 19, 1072–1075 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zähringer, J. et al. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. Light Sci. Appl. 12, 70 (2023)

  25. Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Heilemann, M. et al. High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal. Chem. 74, 3511–3517 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L. & Hell, S. W. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express 19, 3130–3143 (2011).

    Article  PubMed  ADS  Google Scholar 

  28. Schröder, T. et al. Shrinking gate fluorescence correlation spectroscopy yields equilibrium constants and separates photophysics from structural dynamics. Proc. Natl Acad. Sci. USA 120, e2211896120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mahalingam, M. et al. Structural mapping of divergent regions in the type 1 ryanodine receptor using fluorescence resonance energy transfer. Structure 22, 1322–1332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Svensson, B. et al. FRET-based trilateration of probes bound within functional ryanodine receptors. Biophys. J. 107, 2037–2048 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Muschielok, A. et al. A nano-positioning system for macromolecular structural analysis. Nat. Methods 5, 965–971 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Muschielok, A. & Michaelis, J. Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. J. Phys. Chem. B 115, 11927–11937 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Qu, X., Wu, D., Mets, L. & Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl Acad. Sci. USA 101, 11298–11303 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Ram, S., Ward, E. S. & Ober, R. J. Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl Acad. Sci. USA 103, 4457–4462 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Pfeiffer, M. et al. Single antibody detection in a DNA origami nanoantenna. iScience 24, 103072 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Zhang, P. et al. Capturing transient antibody conformations with DNA origami epitopes. Nat. Commun. 11, 3114 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–L16 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Hedley, G. J. et al. Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nat. Commun. 12, 1327 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Thiele, J. C. et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano 14, 14190–14200 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Oleksiievets, N. et al. Wide-field fluorescence lifetime imaging of single molecules. J. Phys. Chem. A 124, 3494–3500 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Slenders, E. & Vicidomini, G. ISM-FLUX: MINFLUX with an array detector. Phys. Rev. Res. 5, 023033 (2023).

    Article  CAS  Google Scholar 

  44. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Timney, B. L. et al. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215, 57–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wagenbauer, K. F. et al. How we make DNA origami. Chembiochem 18, 1873–1885 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Fischer, S. et al. Shape and interhelical spacing of DNA origami nanostructures studied by small-angle X-ray scattering. Nano Lett. 16, 4282–4287 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Wang, S. et al. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics 5, 251–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.T. is grateful for support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 201269156—SFB 1032 Project A13 and funding by the Bavarian Ministry of Science and the Arts through the ONE MUNICH Project ‘Munich Multiscale Biofabrication’. P.T. is indebted to the DFG for funding via grant nos. 470075523 and 459594986, and Germany’s Excellence Strategy (grant no. EXC 2089/1-390776260). We thank P. Luna, P. Xaverl and T. Charly for their support with the measurements and data analysis, and A. Kardinal, H. Lipfert, S. Steger and M. Ehrl for laboratory upkeep.

Author information

Authors and Affiliations

Authors

Contributions

F.C., J.Z., T.S., F.S., F.D.S. and P.T developed the concept. F.C., J.Z. and J.B. designed and prepared samples. M.P. designed and prepared antibody samples. P.S. designed and prepared lipid bilayer samples. F.C. and J.Z. performed and analysed measurements. P.T. supervised the project. All authors have written, read and approved the final manuscript.

Corresponding author

Correspondence to Philip Tinnefeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.44

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Sections 1–14.

Supplementary Video 1

The time evolution of the localizations with the corresponding FRET radii and the subsequent localization of the FRET acceptor.

Supplementary Video 2

The time evolution of the co-localization of two pointer systems by lifetime multiplexing.

Supplementary Video 3

The time evolution of the orientation of the lipid raft measured by the co-localization of two fluorophores by lifetime multiplexing.

Supplementary Data 1

Supplementary Tables 2–9. Sequences of the DNA oligonucleotides used for DNA origami folding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, F., Zähringer, J., Bohlen, J. et al. Super-resolved FRET and co-tracking in pMINFLUX. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01384-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing