Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and stable perovskite solar cells with regulated depletion region

Abstract

Irreversible ion migration from the perovskite layer to the charge transport layer and metal electrodes causes irreversible efficiency loss in perovskite solar cells. Confining the mobile ions within the perovskite layer is a promising strategy to improve the long-term operational stability of solar cells. Here we inhibit the migration of iodide ions out of the perovskite under light illumination by creating a depletion region inside the perovskite layer. Precise control of the doping depth induces an electric field within the perovskite that counteracts ion migration while enhancing carrier separation. Our devices exhibit a certified power conversion efficiency of 24.6% and maintain over 88% of the initial efficiency after 1,920 h of continuous illumination under maximum power point conditions (65 °C in ambient air, following the ISOS-L-2 protocol). The power conversion efficiency returns to more than 94% of its initial value after overnight recovery. When operating under repeated 12 h light on/off cycles for over 10,000 h (solar simulator at 65 °C and ambient air, following the ISOS-LC-2 protocol), the efficiency loss is less than 2%. We expect this method to open up new and effective avenues towards enhancing the long-term stability of high-performance perovskite photovoltaics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization on the regulation of the depletion region.
Fig. 2: Characterization on carrier extraction and device performance.
Fig. 3: Effect of depletion region regulation on inhibition of iodide ion migration.
Fig. 4: Stability test for target and control devices.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Best Research-Cell-Efficiency Chart (NREL, 2023); https://www.nrel.gov/pv/cell-efficiency.html

  9. Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Di Girolamo, D. et al. Ion migration-induced amorphization and phase segregation as a degradation mechanism in planar Perovskite solar cells. Adv. Energy Mater. 10, 2000310 (2020).

    Article  Google Scholar 

  11. Yuan, H. F. et al. Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration. J. Phys. Chem. Lett. 7, 561–566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    Article  CAS  Google Scholar 

  13. Gottesman, R. et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 6, 2332–2338 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Besleaga, C. et al. Iodine migration and degradation of perovskite solar cells enhanced by metallic electrodes. J. Phys. Chem. Lett. 7, 5168–5175 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Y. C. et al. Mobile-ion-induced degradation of organic hole-selective layers in perovskite solar cells. J. Phys. Chem. C 121, 14517–14523 (2017).

    Article  CAS  Google Scholar 

  17. Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Inter. 2, 1500195 (2015).

    Article  Google Scholar 

  19. De Bastiani, M. et al. Toward stable monolithic perovskite/silicon tandem photovoltaics: a six-month outdoor performance study in a hot and humid climate. ACS Energy Lett. 6, 2944–2951 (2021).

    Article  Google Scholar 

  20. Lin, D. X. et al. Ion migration accelerated reaction between oxygen and metal halide perovskites in light and its suppression by cesium incorporation. Adv. Energy Mater. 11, 2002552 (2021).

    Article  CAS  Google Scholar 

  21. Zhou, W. K. et al. Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells. J. Phys. Chem. Lett. 8, 4122–4128 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, D. et al. Ion-migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv. Mater. 30, 1707583 (2018).

    Article  Google Scholar 

  23. Cai, Y. et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31, 2005776 (2021).

    Article  CAS  Google Scholar 

  24. Zai, H. et al. Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields. Joule 5, 2148–2163 (2021).

    Article  CAS  Google Scholar 

  25. Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Azmi, R. et al. Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Cai, M. L. et al. Control of electrical potential distribution for high-performance perovskite solar cells. Joule 2, 296–306 (2018).

    Article  CAS  Google Scholar 

  29. Zhang, M. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Wang, C. et al. Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater. 7, 1700414 (2017).

    Article  Google Scholar 

  31. Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014).

    Article  ADS  Google Scholar 

  32. Yin, W. J., Shi, T. T. & Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  ADS  Google Scholar 

  33. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Andrade, J. S. Jr, Street, D. A., Shinohara, T., Shibusa, Y. & Arai, Y. Percolation disorder in viscous and nonviscous flow through porous media. Phys. Rev. E 51, 5725–5731 (1995).

    Article  ADS  CAS  Google Scholar 

  35. Oldenburg, C. M., Mukhopadhyay, S. & Cihan, A. On the use of Darcy’s law and invasion-percolation approaches for modeling large-scale geologic carbon sequestration. Greenh. Gases Sci. Technol. 6, 19–33 (2016).

    Article  CAS  Google Scholar 

  36. Larson, R. G., Davis, H. T. & Scriven, L. E. Displacement of residual nonwetting fluid from porous media. Chem. Eng. Sci. 36, 75–85 (1981).

    Article  CAS  Google Scholar 

  37. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Giovanni, D. et al. Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nat. Commun. 10, 3456 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. B. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Lu, G. L., Zheng, F., Wang, J. Q. & Shen, W. Z. Thin Al2O3 passivated boron emitter of n-type bifacial c-Si solar cells with industrial process. Prog. Photovoltaics 25, 280–290 (2017).

    Article  CAS  Google Scholar 

  43. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Lee, K., Murray, E. D., Kong, L. Z., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant nos. 2020YFB1506400 and 2021YFB3800100) and the National Natural Science Foundation of China (grant nos. U20A20245, U21A20171, 11834011 and 12074245). We thank H. Li, Q. Shan for KPFM measurements; R. Wang for TRPL measurements; J. Ding for TOF-SIMS measurements; X. Ding and N. Zhang for XPS and ultraviolet photoelectron spectroscopy measurements; B. Zhu for Fourier-transform infrared spectroscopy measurements; Q. Rao for X-ray diffraction measurements; and Z. Bao and Y. Lin for SEM measurement from the Instrumental Analysis Center of Shanghai Jiao Tong University. We thank X. Liu from the College of Arts and Sciences, University of Tokyo, for valuable advice on the experiments and paper.

Author information

Authors and Affiliations

Authors

Contributions

Z.S., Q.H., Y.Y. and L.H. conceived the experiments, performed data analysis and wrote the paper. Z.S. led the fabrication of the solar cells. Y.S. and X.L. helped with the sample preparation for characterization. Y.W., Y.Y. and Y.Z. participated the discussion about the feasibility of the experiment. All authors discussed the results and commented on the paper. Q.H. and L.H. directed and supervised the entire research.

Corresponding authors

Correspondence to Qifeng Han, Yang Yang or Liyuan Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Nam-Gyu Park, Michael Saliba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Characterization, Supplementary Notes 1 and 2, Figs. 1–37 and Tables 1–8.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Han, Q., Luo, X. et al. Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01383-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing