Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Body-conformable light-emitting materials and devices

Subjects

Abstract

Body-conformable light-emitting devices have generated considerable interest because of their widespread potential applications in aerospace, medicine and electronics. These devices, which are flexible, stretchable and soft, can integrate seamlessly and inconspicuously with the human body for tasks such as real-time monitoring, display of information, biosensing, optogenetic stimulation and medical therapy. At present, designs can be roughly divided into three different types: wearable light-emitting textiles, attachable light-emitting skins and implantable light-emitting biodevices. Here we evaluate recent advances in all three areas, discussing the materials design, device engineering strategies and diverse applications of these devices. The outstanding challenges and issues that need to be resolved before achieving widespread adoption and improved capabilities are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different methods for making fibre-shaped light-emitting devices.
Fig. 2: Construction of light-emitting textiles and their various wearable applications.
Fig. 3: Applications of attachable light-emitting skins.
Fig. 4: Implantable light-emitting biodevices with promising properties.
Fig. 5: Different applications of implantable light-emitting biodevices.

Similar content being viewed by others

References

  1. Chen, J. et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016).

    Article  ADS  CAS  Google Scholar 

  2. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  ADS  PubMed  Google Scholar 

  3. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Hou, B. et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 5, 682–693 (2022).

    Article  Google Scholar 

  7. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zhang, Z. et al. Textile display for electronic and brain-interfaced communications. Adv. Mater. 30, 1800323 (2018).

    Article  Google Scholar 

  9. Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1, 652–660 (2018).

    Article  Google Scholar 

  12. Zhang, Z. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photon. 9, 233–238 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Choi, H. W. et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13, 814 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwon, S. et al. High luminance fiber-based polymer light-emitting devices by a dip-coating method. Adv. Electron. Mater. 1, 1500103 (2015).

    Article  Google Scholar 

  16. Yin, D. et al. Highly flexible fabric-based organic light-emitting devices for conformal wearable displays. Adv. Mater. Technol. 5, 1900942 (2020).

    Article  CAS  Google Scholar 

  17. Wu, Y., Mechael, S. S., Lerma, C., Carmichael, R. S. & Carmichael, T. B. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns. Matter 2, 882–895 (2020).

    Article  Google Scholar 

  18. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Park, S.-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).

    Article  ADS  CAS  Google Scholar 

  24. Yin, D. et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7, 11573 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013).

    Article  ADS  CAS  Google Scholar 

  27. Zhang, Z. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Tan, Y. J. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 19, 182–188 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Choi, M. K. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 30, 1703279 (2018).

    Article  Google Scholar 

  30. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamagishi, K. et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat. Biomed. Eng. 3, 27–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Kong, D., Zhang, K., Tian, J., Yin, L. & Sheng, X. Biocompatible and biodegradable light-emitting materials and devices. Adv. Mater. Technol. 7, 2100006 (2022).

    Article  CAS  Google Scholar 

  34. Lu, D. et al. Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 31, 1902739 (2019).

    Article  CAS  Google Scholar 

  35. Khanra, S. et al. Self-assembled peptide–polyfluorene nanocomposites for biodegradable organic electronics. Adv. Mater. Interf. 2, 1500265 (2015).

    Article  Google Scholar 

  36. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kathe, C. et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat. Biotechnol. 40, 198–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ko, K. J. et al. High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale 10, 16184–16192 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. O'Connor, B., An, K. H., Zhao, Y., Pipe, K. P. & Shtein, M. Fiber shaped light emitting device. Adv. Mater. 19, 3897–3900 (2007).

    Article  CAS  Google Scholar 

  42. Vohra, V., Giovanella, U., Tubino, R., Murata, H. & Botta, C. Electroluminescence from conjugated polymer electrospun nanofibers in solution processable organic light-emitting diodes. ACS Nano 5, 5572–5578 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Camposeo, A., Persano, L. & Pisignano, D. Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol. Mater. Eng. 298, 487–503 (2013).

    Article  CAS  Google Scholar 

  44. Morello, G., Moffa, M., Girardo, S., Camposeo, A. & Pisignano, D. Optical gain in the near infrared by light-emitting electrospun fibers. Adv. Funct. Mater. 24, 5225–5231 (2014).

    Article  CAS  Google Scholar 

  45. Yang, H., Lightner, C. R. & Dong, L. Light-emitting coaxial nanofibers. ACS Nano 6, 622–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, D. et al. Customizable and stretchable fibre-shaped electroluminescent devices via mulitcore-shell direct ink writing. J. Mater. Chem. C 8, 15092–15098 (2020).

    Article  CAS  Google Scholar 

  47. Kwon, S. et al. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18, 347–356 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Lee, H. & Chun, Y. T. Fibertronic quantum-dot light-emitting diode for e-textile. ACS Appl. Nano Mater. 3, 11060–11069 (2020).

    Article  ADS  CAS  Google Scholar 

  49. Hwang, Y. H. et al. Bright-multicolor, highly efficient, and addressable phosphorescent organic light-emitting fibers: toward wearable textile information displays. Adv. Funct. Mater. 31, 2009336 (2021).

    Article  CAS  Google Scholar 

  50. Hwang, Y. H. et al. High-performance and reliable white organic light-emitting fibers for truly wearable textile displays. Adv. Sci. 9, 2104855 (2022).

    Article  CAS  Google Scholar 

  51. Jamali, V. et al. Perovskite-carbon nanotube light-emitting fibers. Nano Lett. 20, 3178–3184 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Song, H. et al. Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. npj Flex. Electron. 6, 66 (2022).

    Article  CAS  Google Scholar 

  54. Hardy, D. A. et al. Engineering a costume for performance using illuminated LED-yarns. Fibers 6, 35 (2018).

    Article  Google Scholar 

  55. Tylcz, J. B., Vicentini, C. & Mordon, S. in Smart Textiles and Their Applications (ed. Koncar, V.) 71–87 (Woodhead, 2016).

  56. George, A. & Shrivastav, P. S. Photodynamic therapy with light emitting fabrics: a review. Arch. Dermatol. Res. 314, 929–936 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Mordon, S. et al. Light emitting fabrics for photodynamic therapy: technology, experimental and clinical applications. Transl. Biophoton. 2, e202000005 (2020).

    Article  Google Scholar 

  58. Lee, H. E. et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 55, 454–462 (2019).

    Article  ADS  CAS  Google Scholar 

  59. Song, S., Song, B., Cho, C.-H., Lim, S. K. & Jeong, S. M. Textile-fiber-embedded multiluminescent devices: a new approach to soft display systems. Mater. Today 32, 46–58 (2020).

    Article  CAS  Google Scholar 

  60. Park, J. et al. Highly customizable all solution–processed polymer light emitting diodes with inkjet printed Ag and transfer printed conductive polymer electrodes. Adv. Funct. Mater. 29, 1902412 (2019).

    Article  Google Scholar 

  61. Kim, S. et al. Negatively strain-dependent electrical resistance of magnetically arranged nickel composites: application to highly stretchable electrodes and stretchable lighting devices. Adv. Mater. 26, 3094–3099 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Hong, J.-H. et al. 9.1-inch stretchable AMOLED display based on LTPS technology. J. Soc. Inf. Display 25, 194–199 (2017).

    Article  CAS  Google Scholar 

  63. Kim, R.-H. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881–3886 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Yin, D. et al. Two-dimensional stretchable organic light-emitting devices with high efficiency. ACS Appl. Mater. Interf. 8, 31166–31171 (2016).

    Article  CAS  Google Scholar 

  65. Kim, T.-H. et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 11, 5992–6003 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Li, Y.-F. et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv. Mater. 31, 1807516 (2019).

    Article  Google Scholar 

  69. Jinno, H. et al. Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nat. Commun. 12, 2234 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, J., Yan, C., Chee, K. J. & Lee, P. S. Highly stretchable and self-deformable alternating current electroluminescent devices. Adv. Mater. 27, 2876–2882 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Yang, C. H., Chen, B., Zhou, J., Chen, Y. M. & Suo, Z. Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, J. et al. Extremely stretchable electroluminescent devices with ionic conductors. Adv. Mater. 28, 4490–4496 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Li, S., Peele, B. N., Larson, C. M., Zhao, H. & Shepherd, R. F. A stretchable multicolor display and touch interface using photopatterning and transfer printing. Adv. Mater. 28, 9770–9775 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, Y. et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019).

    Article  CAS  Google Scholar 

  75. Yu, Z., Niu, X., Liu, Z. & Pei, Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bade, S. G. R. et al. Stretchable light-emitting diodes with organometal-halide-perovskite–polymer composite emitters. Adv. Mater. 29, 1607053 (2017).

    Article  Google Scholar 

  77. Liang, J. et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, J.-H. & Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jao, C.-C. et al. Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym. Int. 70, 426–431 (2021).

    Article  CAS  Google Scholar 

  80. Li, X.-C. et al. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient non-blended stretchable OLEDs. Angew. Chem. Int. Ed. 62, e202213749 (2023).

    Article  ADS  CAS  Google Scholar 

  81. Liu, W. et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater. 22, 737–745 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Jeong, M. W. et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci. Adv. 9, eadh1504 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, Y. et al. A self-assembled 3D penetrating nanonetwork for high-performance intrinsically stretchable polymer light-emitting diodes. Adv. Mater. 34, 2201844 (2022).

    Article  CAS  Google Scholar 

  84. Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H. & Kim, D.-H. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28, 1801834 (2018).

    Article  Google Scholar 

  85. Lee, H. E. et al. Micro light-emitting diodes for display and flexible biomedical applications. Adv. Funct. Mater. 29, 1808075 (2019).

    Article  Google Scholar 

  86. Chen, S. et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhao, Y. et al. Wirelessly operated, implantable optoelectronic probes for optogenetics in freely moving animals. IEEE Trans. Electron Dev. 66, 785–792 (2019).

    Article  ADS  CAS  Google Scholar 

  90. Kim, T.-i et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bansal, A., Yang, F., Xi, T., Zhang, Y. & Ho, J. S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA 115, 1469–1474 (2018).

  92. Noh, K. N. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 14, 1702479 (2018).

    Article  Google Scholar 

  93. McCall, J. G. et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8, 2413–2428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Park, S. I. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl. Acad. Sci. USA 113, E8169–E8177 (2016).

  95. Li, L. et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe. Nat. Commun. 13, 839 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, Y. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 116, 21427–21437 (2019).

  98. Grajales-Reyes, J. G. et al. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat. Protoc. 16, 3072–3088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ausra, J. et al. Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation. Sci. Adv. 8, eabq7469 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ding, H. et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).

  101. Lin, X. et al. Core–shell–shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett. 18, 948–956 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Lee, S. et al. A 250 μm × 57 μm microscale opto-electronically transduced electrodes (MOTEs) for neural recording. IEEE Trans. Biomed. Circ. Syst. 12, 1256–1266 (2018).

    Article  Google Scholar 

  104. Obaid, S. & Lu, L. Highly efficient microscale gallium arsenide solar cell arrays as optogenetic power options. IEEE Photon. J. 11, 8400108 (2019).

    Article  CAS  Google Scholar 

  105. Park, S. I. et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J. Neur. Eng. 12, 056002 (2015).

    Article  Google Scholar 

  106. Michoud, F. et al. Epineural optogenetic activation of nociceptors initiates and amplifies inflammation. Nat. Biotechnol. 39, 179–185 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwon, K. Y., Sirowatka, B., Weber, A. & Li, W. Opto-μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. IEEE Trans. Biomed. Circ. Syst. 7, 593–600 (2013).

    Article  Google Scholar 

  109. Steude, A., Witts, E. C., Miles, G. B. & Gather, M. C. Arrays of microscopic organic LEDs for high-resolution optogenetics. Sci. Adv. 2, e1600061 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  110. Rajalingham, R. et al. Chronically implantable LED arrays for behavioral optogenetics in primates. Nat. Methods 18, 1112–1116 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Zheng, H. et al. A shape-memory and spiral light-emitting device for precise multisite stimulation of nerve bundles. Nat. Commun. 10, 2790 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  112. Ciccone, G. et al. Tailoring organic LEDs for bidirectional optogenetic control via dual-color switching. Adv. Funct. Mater. 32, 2110590 (2022).

    Article  CAS  Google Scholar 

  113. Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Won, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 28, 1801819 (2018).

    Article  Google Scholar 

  115. Han, S. & Shin, G. Biodegradable optical fiber in a soft optoelectronic device for wireless optogenetic applications. Coatings 10, 1153 (2020).

    Article  CAS  Google Scholar 

  116. Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    Article  CAS  Google Scholar 

  117. Zalar, P. et al. DNA electron injection interlayers for polymer light-emitting diodes. J. Am. Chem. Soc. 133, 11010–11013 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Gupta, R., Nagpal, S., Arora, S., Bhatnagar, P. & Mathur, P. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode. J. Nanophoton. 5, 059505 (2011).

    Article  ADS  Google Scholar 

  119. Kim, D. et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 117, 21138–21146 (2020).

  120. Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Bansal, A., Shikha, S. & Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng. 7, 749–769 (2022).

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant numbers BE1100046, 21834007 and T2188102), National Key R&D Program of China (2023YFA0915200), Shanghai "Science and Technology Innovation Action Plan" Project (23JC1402900) and Shanghai Jiao Tong University (grant numbers SD6040004/089 and WH220411004). We thank A. L. Chun of Science Storylab for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., Y.W., S.J. and C.F. contributed to writing and revising the manuscript, and approved the final version.

Corresponding author

Correspondence to Zhitao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, Y., Jia, S. et al. Body-conformable light-emitting materials and devices. Nat. Photon. 18, 114–126 (2024). https://doi.org/10.1038/s41566-023-01335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01335-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing