Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A dive into underwater solar cells

Abstract

Our oceans are vast, mostly unexplored and difficult to monitor. Large-scale implementation of a fully autonomous ‘Internet of Underwater Things’ would transform how we collect and share data from this domain; however, deployment is prohibited by the lack of persistent power sources. In principle, underwater solar-energy generation can complement the use of batteries and provide a solution, although dedicated research is needed since traditional silicon solar cells do not perform well underwater due to water’s strong absorption of near-infrared light. In this Perspective we present examples of solar-powered underwater applications and discuss which types of solar-harvesting materials could be appropriate, including GaInP variants, CdTe, organic semiconductors, and perovskite semiconductors. We also discuss challenges that need to be addressed, such as the development of effective antifouling coatings and new certification standards given that underwater conditions are starkly different from those in terrestrial environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IoUT and available underwater solar power.
Fig. 2: Potential materials of interest.
Fig. 3: Underwater solar cell evaluation—in situ and ex situ.
Fig. 4: Biofouling, consequences, and prevention.

Similar content being viewed by others

References

  1. Wang, X. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renew. Sustain. Energy Rev. 16, 1958–1970 (2012).

    Article  Google Scholar 

  2. Jenkins, P. & Walters, R. Photovoltaic technology for Navy and Marine Corps applications. In Proc. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) 958–961 (IEEE, 2017)

  3. Driscol, B. P., Gish, L. A. & Coe, R. G. A scoping study to determine the location-specific WEC threshold size for wave-powered AUV recharging. IEEE J. Ocean. Eng. 46, 1–10 (2021).

    Article  ADS  Google Scholar 

  4. Domingo, M. C. An overview of the internet of underwater things. J. Netw. Comput. Appl. 35, 1879–1890 (2012).

    Article  Google Scholar 

  5. Delphin Raj, K. M. et al. Underwater network management system in internet of underwater things: open challenges, benefits, and feasible solution. Electronics 9, 1142 (2020).

    Article  Google Scholar 

  6. Chen, H. et al. Attraction, challenge and current status of marine current energy. IEEE Access 6, 12665–12685 (2018).

    Article  Google Scholar 

  7. Melikoglu, M. Current status and future of ocean energy sources: a global review. Ocean Eng. 148, 563–573 (2018).

    Article  Google Scholar 

  8. Wang, G., Yang, Y. & Wang, S. Ocean thermal energy application technologies for unmanned underwater vehicles: a comprehensive review. Appl. Energy 278, 115752 (2020).

    Article  Google Scholar 

  9. Hahn, G. G., Adoram-Kershner, L. A., Cantin, H. P. & Shafer, M. W. Assessing solar power for globally migrating marine and submarine systems. IEEE J. Ocean. Eng. 44, 693–706 (2019).

    Article  ADS  Google Scholar 

  10. Smith, R. C. & Baker, K. S. Optical properties of the natural waters (200–800 nm). Appl. Opt. 20, 177–184 (1981).

    Article  ADS  Google Scholar 

  11. Mishra, D. R., Narumalani, S., Rundquist, D. & Lawson, M. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: implications for water penetration by high resolution satellite data. ISPRS J. Photogramm. Remote Sens. 60, 48–64 (2005).

    Article  ADS  Google Scholar 

  12. Morel, A. et al. Optical properties of the ‘clearest’ natural waters. Limnol. Oceanogr. 52, 217–229 (2007).

    Article  ADS  Google Scholar 

  13. Röhr, J. A., Lipton, J., Kong, J., Stephen, A. & Taylor, A. D. Efficiency limits of underwater solar cells. Joule 4, 840–849 (2020).

  14. Jenkins, P. P. et al. High-bandgap solar cells for underwater photovoltaic applications. IEEE J. Photovolt. 4, 202–207 (2014).

    Article  Google Scholar 

  15. Ageev, M. D. & Blidberg, D. R. Current progress in the development of a solar powered autonomous underwater vehicle (AUV). In Proc. 1998 International Symposium on Underwater Technology 145–149 (IEEE, 1998).

  16. Jalbert, J. et al. A solar-powered autonomous underwater vehicle. In Proc. Oceans 2003. Celebrating the Past.Teaming Toward the Future 1132–1140 (IEEE, 2003).

  17. Blidberg, D. R., Chappell, S. & Jalbert, J. C. Long endurance sampling of the ocean with solar powered AUV’s. IFAC Proc. Vol. 37, 561–566 (2004).

  18. Crimmins, D. M. et al. Long-endurance test results of the solar-powered AUV system. In Proc. OCEANS 2006 (IEEE, 2006); https://doi.org/10.1109/OCEANS.2006.306997

  19. Abdellatif, M. M., Maher, S. M., Al-Sayyad, G. M. & Abdellatif, S. O. Implementation of a low cost, solar charged RF modem for underwater wireless sensor networks. Int. J. Smart Sens. Intell. Syst. 13, 1–11 (2020).

    Google Scholar 

  20. Röhr, J. A. et al. Identifying optimal photovoltaic technologies for underwater applications. iScience 25, 104531 (2022).

    Article  ADS  Google Scholar 

  21. Joshi, K. B., Costello, J. H. & Priya, S. Estimation of solar energy harvested for autonomous jellyfish vehicles (AJVs). IEEE J. Ocean. Eng. 36, 539–551 (2011).

    Article  ADS  Google Scholar 

  22. Arima, M., Okashima, T. & Yamada, T. Development of a solar-powered underwater glider. In Proc. 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, 2011); https://doi.org/10.1109/UT.2011.5774120

  23. Enaganti, P. K., Dwivedi, P. K., Sudha, R., Srivastava, A. K. & Goel, S. Underwater characterization and monitoring of amorphous and monocrystalline solar cells in diverse water settings. IEEE Sens. J. 20, 2730–2737 (2020).

    Article  ADS  Google Scholar 

  24. Kong, M. et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Opt. Express 27, 34542–34551 (2019).

    Article  ADS  Google Scholar 

  25. Mowbray, D. J., Kowalski, O. P., Hopkinson, M., Skolnick, M. S. & David, J. P. R. Electronic band structure of AlGaInP grown by solid-source molecular-beam epitaxy. Appl. Phys. Lett. 65, 213–215 (1994).

    Article  ADS  Google Scholar 

  26. Perl, E. E. et al. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy. IEEE J. Photovolt. 6, 770–776 (2016).

    Article  Google Scholar 

  27. Simon, J. et al. III-V-based optoelectronics with low-cost dynamic hydride vapor phase epitaxy. Crystals (Basel) 9, 3 (2019).

    Article  Google Scholar 

  28. Riede, M., Spoltore, D. & Leo, K. Organic solar cells—the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021).

  29. Kim, S., Jahandar, M., Jeong, J. H. & Lim, D. C. Recent progress in solar cell technology for low-light indoor applications. Curr. Altern. Energy 3, 3–17 (2019).

    Article  Google Scholar 

  30. Ma, L. K. et al. High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 4, 1486–1500 (2020).

    Article  Google Scholar 

  31. Walters, R. J. et al. Multijunction organic photovoltaic cells for underwater solar power. In Proc. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015); https://doi.org/10.1109/PVSC.2015.7355644

  32. Lee, H. K. H. et al. The role of fullerenes in the environmental stability of polymer:fullerene solar cells. Energy Environ. Sci. 11, 417–428 (2018).

    Article  Google Scholar 

  33. Speller, E. M. et al. From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7, 23361–23377 (2019).

    Article  Google Scholar 

  34. Bi, P. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5, 2408–2419 (2021).

    Article  Google Scholar 

  35. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  36. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  Google Scholar 

  37. Fei, Z. et al. An alkylated indacenodithieno[3,2‐b]thiophene‐based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv. Mater. 30, 1705209 (2018).

    Article  Google Scholar 

  38. Li, S. et al. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159–7167 (2018).

    Article  Google Scholar 

  39. Chouhan, L., Ghimire, S., Subrahmanyam, C., Miyasaka, T. & Biju, V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 49, 2869–2885 (2020).

    Article  Google Scholar 

  40. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  Google Scholar 

  41. Almora, O. et al. Device performance of emerging photovoltaic materials (version 2). Adv. Energy Mater. 11, 2102526 (2021).

  42. Liu, C. et al. Promising applications of wide bandgap inorganic perovskites in underwater photovoltaic cells. Sol. Energy 233, 489–493 (2022).

    Article  ADS  Google Scholar 

  43. Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article  ADS  Google Scholar 

  44. Leguy, A. M. A. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015).

    Article  Google Scholar 

  45. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article  ADS  Google Scholar 

  46. Jiang, Y. et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4, 585–593 (2019).

    Article  ADS  Google Scholar 

  47. Chen, H. et al. Ultra-high moisture stability perovskite films, soaking in water over 360 min. Chem. Eng. J. 450, 138028 (2022).

    Article  Google Scholar 

  48. Lanzetta, L., Webb, T., Marin-Beloqui, J., Macdonald, T. & Haque, S. Halide chemistry in tin perovskite optoelectronics: bottlenecks and opportunities. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202213966 (2022).

  49. Sanchez-Diaz, J. et al. Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule 6, 861–883 (2022).

    Article  Google Scholar 

  50. Enaganti, P. K. et al. Performance analysis of submerged polycrystalline photovoltaic cell in varying water conditions. IEEE J. Photovolt. 10, 531–538 (2020).

    Article  Google Scholar 

  51. Xie, Q., Pan, J., Ma, C. & Zhang, G. Dynamic surface antifouling: mechanism and systems. Soft Matter 15, 1087–1107 (2018).

    Article  ADS  Google Scholar 

  52. Cao, S., Wang, J. D., Chen, H. S. & Chen, D. R. Progress of marine biofouling and antifouling technologies. Chin. Sci. Bull. 56, 598–612 (2011).

    Article  Google Scholar 

  53. Yebra, D. M., Kiil, S. & Dam-Johansen, K. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50, 75–104 (2004).

    Article  Google Scholar 

  54. Blidberg, D. R., Jalbert, J. & Ageev, M. D. The AUSI/IMTP solar powered autonomous undersea vehicle. In Proc. IEEE Oceanic Engineering Society OCEANS’98 Conference 363–368 (IEEE, 1998).

  55. Ageev, M. D., Blidberg, D. R., Jalbert, J., Melchin, C. J. & Troop, D. P. Results of the evaluation and testing of the solar powered AUV and its subsystems. In Proc. IEEE Symposium on Autonomous Underwater Vehicle Technology 137–145 (IEEE, 2002).

  56. Lobe, H., Haldeman, C. & Glenn, S. M. ClearSignal coating controls biofouling on the Rutgers glider crossing. Sea Technol. 51, 31–36 (2010).

    Google Scholar 

  57. Chen, R. et al. Transparent polymer–ceramic hybrid antifouling coating with superior mechanical properties. Adv. Funct. Mater. 31, 2011145 (2021).

    Article  Google Scholar 

  58. Sunny, S. et al. Transparent antifouling material for improved operative field visibility in endoscopy. Proc. Natl Acad. Sci. USA 113, 11676–11681 (2016).

    Article  ADS  Google Scholar 

  59. Baran, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from New York University and from the US Department of Energy, Solar Energy Technologies Office under agreement DE-EE0009829.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason A. Röhr or André D. Taylor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röhr, J.A., Sartor, B.E., Lipton, J. et al. A dive into underwater solar cells. Nat. Photon. 17, 747–754 (2023). https://doi.org/10.1038/s41566-023-01276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01276-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing