Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mid-infrared cascade intraband electroluminescence with HgSe–CdSe core–shell colloidal quantum dots

Abstract

Efficient infrared light sources are needed for machine vision and molecular sensing. In the visible, electroluminescence from colloidal quantum dots is highly efficient, wavelength tunable and cost effective, which motivates using the same approach in the infrared. Despite the promising performances of colloidal quantum dots light-emitting diodes in the near-infrared, mid-infrared devices show quantum efficiencies of about 0.1% due to the much weaker emission. Moreover, these devices relied exclusively on the interband transition, restricting the possible materials. Here we show electroluminescence at 5 µm using the intraband transition between 1Se and 1Pe states within the conduction band of core–shell HgSe–CdSe colloidal quantum dots. The 4.5% quantum efficiency approaches that of commercial epitaxial cascade quantum well light-emitting diodes. The high emission efficiency and the electrical characteristics support a similar cascade process where the electrons, driven by the bias across the device, repeatedly tunnel into 1Pe and relax to 1Se as they hop from quantum dot to quantum dot.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and electroluminescence performance of HgSe–CdSe CQDs LED.
Fig. 2: Quantum efficiency of HgSe–CdSe and HgTe devices and mechanism discussion.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Jung, D., Bank, S., Lee, M. L. & Wasserman, D. Next-generation mid-infrared sources. J. Opt. 19, 123001 (2017).

    ADS  Google Scholar 

  2. Krier, A; et al. in Mid-Infrared Optoelectronics (eds Tournie, E. & Cerutti, L.) 59–90 (Elsevier, 2020).

  3. Vitiello, M. S., Scalari, G., Williams, B. & De Natale, P. Quantum cascade lasers: 20 years of challenges. Opt. Express 23, 5167–5182 (2015).

    ADS  Google Scholar 

  4. Vurgaftman, I. et al. Interband cascade lasers. J. Phys. D 48, 123001 (2015).

    ADS  Google Scholar 

  5. Wingreen, N. S. & Stafford, C. A. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J. Quantum Electron. 33, 1170–1173 (1997).

    ADS  Google Scholar 

  6. Dmitriev, I. & Suris, R. Quantum dot cascade laser: arguments in favor. Physica E 40, 2007–2009 (2008).

    ADS  Google Scholar 

  7. Zhuo, N. et al. Quantum dot cascade laser. Nanoscale Res. Lett. 9, 144 (2014).

    ADS  Google Scholar 

  8. Zhuo, N. et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm. Opt. Express 25, 13807–13815 (2017).

    ADS  Google Scholar 

  9. Ulbrich, N. et al. Midinfrared intraband electroluminescence from AlInAs quantum dots. Appl. Phys. Lett. 83, 1530–1532 (2003).

    ADS  Google Scholar 

  10. Liverini, V., Bismuto, A., Nevou, L., Beck, M. & Faist, J. Midinfrared electroluminescence from InAs/InP quantum dashes. Appl. Phys. Lett. 97, 221109 (2010).

    ADS  Google Scholar 

  11. Wasserman, D., Ribaudo, T., Lyon, S., Lyo, S. & Shaner, E. Room temperature midinfrared electroluminescence from InAs quantum dots. Appl. Phys. Lett. 94, 061101 (2009).

    ADS  Google Scholar 

  12. Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

    Google Scholar 

  13. Bayer, M. Bridging two worlds: colloidal versus epitaxial quantum dots. Ann. Phys. 531, 1900039 (2019).

    MATH  Google Scholar 

  14. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

    ADS  Google Scholar 

  15. Tessler, N., Medvedev, V., Kazes, M., Kan, S. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    ADS  Google Scholar 

  16. Supran, G. J. et al. High‐performance shortwave‐infrared light‐emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 27, 1437–1442 (2015).

    Google Scholar 

  17. Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photonics 10, 253–257 (2016).

    ADS  Google Scholar 

  18. Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    ADS  Google Scholar 

  19. Steckel, J. S., Coe‐Sullivan, S., Bulović, V. & Bawendi, M. G. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862–1866 (2003).

    Google Scholar 

  20. Vasilopoulou, M. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photonics 14, 50–56 (2020).

    ADS  Google Scholar 

  21. Qu, J. et al. Electroluminescence from nanocrystals above 2 µm. Nat. Photonics 16, 38–44 (2022).

    ADS  Google Scholar 

  22. Shen, X., Peterson, J. C. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot LEDs. ACS Nano 16, 7301–7308 (2022).

    Google Scholar 

  23. Lu, H., Carroll, G. M., Neale, N. R. & Beard, M. C. Infrared quantum dots: progress, challenges, and opportunities. ACS Nano 13, 939–953 (2019).

    Google Scholar 

  24. Guyot-Sionnest, P., Shim, M. & Wang, C. in Nanocrystal Quantum Dots (ed. Klimov, V. I.) 133–146 (CRC Press, 2017).

  25. Klimov, V. I. & McBranch, D. W. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 80, 4028 (1998).

    ADS  Google Scholar 

  26. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).

    ADS  Google Scholar 

  27. Jeong, K. S. & Guyot-Sionnest, P. Mid-infrared photoluminescence of CdS and CdSe colloidal quantum dots. ACS Nano 10, 2225–2231 (2016).

    Google Scholar 

  28. Shen, G. & Guyot-Sionnest, P. HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon. J. Phys. Chem. C 120, 11744–11753 (2016).

    Google Scholar 

  29. Deng, Z., Jeong, K. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).

    Google Scholar 

  30. Bera, R., Choi, D., Jung, Y. S., Song, H. & Jeong, K. S. Intraband transitions of nanocrystals transforming from lead selenide to self-doped silver selenide quantum dots by cation exchange. J. Phys. Chem. Lett. 13, 6138–6146 (2022).

    Google Scholar 

  31. Shen, G. & Guyot-Sionnest, P. HgTe/CdTe and HgSe/CdX (X= S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. 31, 286–293 (2018).

    Google Scholar 

  32. Kamath, A., Melnychuk, C. & Guyot-Sionnest, P. Toward bright mid-infrared emitters: thick-shell n-type HgSe/CdS nanocrystals. J. Am. Chem. Soc. 143, 19567–19575 (2021).

    Google Scholar 

  33. Kamath, A., Schaller, R. D. & Guyot-Sionnest, P. Bright fluorophores in the second near-infrared window: HgSe/CdSe quantum dots. J. Am. Chem. Soc. 145, 10809–10816 (2023).

    Google Scholar 

  34. Jung, H. et al. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2. Nat. Commun. 13, 3734 (2022).

    ADS  Google Scholar 

  35. Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    ADS  Google Scholar 

  36. Wang, C., Wehrenberg, B. L., Woo, C. Y. & Guyot-Sionnest, P. Light emission and amplification in charged CdSe quantum dots. J. Phys. Chem. B 108, 9027–9031 (2004).

    Google Scholar 

  37. Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    ADS  Google Scholar 

  38. Cho, K.-S. et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 3, 341–345 (2009).

    ADS  Google Scholar 

  39. Hikmet, R., Talapin, D. & Weller, H. Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites. J. Appl. Phys. 93, 3509–3514 (2003).

    ADS  Google Scholar 

  40. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn, 227–229 (John Wiley & Sons, 2007).

  41. Lei, S. et al. Temperature-dependent transition of charge transport in core/shell structured colloidal quantum dot thin films: from Poole–Frenkel emission to variable-range hopping. Appl. Phys. Lett. 121, 063301 (2022).

    ADS  Google Scholar 

  42. Nehate, S. D., Prakash, A., Mani, P. D. & Sundaram, K. B. Work function extraction of indium tin oxide films from MOSFET devices. ECS J. Solid State Sci. Technol. 7, P87 (2018).

    Google Scholar 

  43. Yang, X. et al. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Sci. Rep. 7, 14741 (2017).

    ADS  Google Scholar 

  44. Wu, Y. et al. Widely applicable phosphomolybdic acid doped poly(9-vinylcarbazole) hole transport layer for perovskite light-emitting devices. RSC Adv. 9, 30398–30405 (2019).

    ADS  Google Scholar 

  45. Sholin, V. et al. All-inorganic CdSe/PbSe nanoparticle solar cells. Sol. Energy Mater. Sol. Cells 92, 1706–1711 (2008).

    Google Scholar 

  46. Chen, M. & Guyot-Sionnest, P. Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 11, 4165–4173 (2017).

    Google Scholar 

Download references

Acknowledgements

X.S. is supported by NSF-ECCS-2226311. A.K. is supported by DOE DE-SC0023210. This work made use of the shared facilities at the University of Chicago Materials Research Science and Engineering Center, supported by National Science Foundation under award number DMR-2011854, and the University of Chicago electron microscopy facility (RRID:SCR_019198).

Author information

Authors and Affiliations

Authors

Contributions

P.G.S. and X.S. conceived the project. A.K. synthesized the HgSe–CdSe quantum dots. X.S. fabricated and characterized the LED devices. All authors contributed to the discussions of the paper.

Corresponding author

Correspondence to Philippe Guyot-Sionnest.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Information on synthesis, device design, cascade mechanism and EL performances.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Kamath, A. & Guyot-Sionnest, P. Mid-infrared cascade intraband electroluminescence with HgSe–CdSe core–shell colloidal quantum dots. Nat. Photon. 17, 1042–1046 (2023). https://doi.org/10.1038/s41566-023-01270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01270-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing