Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase conjugation with spatially incoherent light in complex media

Abstract

Shaping light deep inside complex media such as biological tissue is critical to many research fields. Although the coherent control of scattered light via wavefront shaping has led to substantial advances in addressing this challenge, controlling light over extended or multiple targets without physical access to the inside of a medium remains elusive. Here we present a phase conjugation method for spatially incoherent light, which enables non-invasive light control based on incoherent emission from multiple target positions. Our method characterizes the scattering responses of hidden sources by retrieving mutually incoherent scattered fields from speckle patterns. By time-reversing scattered fluorescence with digital phase conjugation, we experimentally demonstrate focusing of light on individual and multiple targets. We also demonstrate maximum energy delivery to an extended target through a scattering medium by exploiting transmission eigenchannels. This paves the way to control light propagation in complex media using incoherent contrasts mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of phase conjugation with incoherent fluorescence.
Fig. 2: Incoherent phase conjugation for multiple targets.
Fig. 3: Selective focusing on individual targets.
Fig. 4: Targeted energy delivery.

Similar content being viewed by others

Data availability

All relevant data are available from the authors on reasonable request.

Code availability

All of the relevant code is available from the authors on reasonable request.

References

  1. Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 388–394 (2010).

    ADS  Google Scholar 

  2. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Google Scholar 

  3. Kubby, J., Gigan, S. & Cui, M. Wavefront Shaping for Biomedical Imaging (Cambridge Univ. Press, 2019).

  4. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Google Scholar 

  5. Yoon, J. et al. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  6. Vellekoop, I. M. & Mosk, A. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Google Scholar 

  7. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    ADS  Google Scholar 

  8. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    ADS  Google Scholar 

  9. Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Modern Phys. 89, 015005 (2017).

    ADS  Google Scholar 

  10. Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).

    ADS  Google Scholar 

  11. Katz, O., Small, E., Guan, Y. & Silberberg, Y. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014).

    ADS  Google Scholar 

  12. Daniel, A., Oron, D. & Silberberg, Y. Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging. Opt. Express 27, 21778–21786 (2019).

    ADS  Google Scholar 

  13. Boniface, A., Blochet, B., Dong, J. & Gigan, S. Noninvasive light focusing in scattering media using speckle variance optimization. Optica 6, 1381–1385 (2019).

    ADS  Google Scholar 

  14. Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 1–7 (2020).

    Google Scholar 

  15. Li, D., Sahoo, S. K., Lam, H. Q., Wang, D. & Dang, C. Non-invasive optical focusing inside strongly scattering media with linear fluorescence. Appl. Phys. Lett. 116, 241104 (2020).

    ADS  Google Scholar 

  16. Rauer, B., Aguiar, H. B., Bourdieu, L. & Gigan, S. Scattering correcting wavefront shaping for three-photon microscopy. Opt. Lett. 47, 6233–6236 (2022).

    ADS  Google Scholar 

  17. Thompson, J. V., Throckmorton, G. A., Hokr, B. H. & Yakovlev, V. V. Wavefront shaping enhanced Raman scattering in a turbid medium. Opt. Lett. 41, 1769–1772 (2016).

    ADS  Google Scholar 

  18. Tian, B. et al. Non-invasive chemically selective energy delivery and focusing inside a scattering medium guided by Raman scattering. Opt. Lett. 47, 2145–2148 (2022).

    ADS  Google Scholar 

  19. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2, 110–115 (2008).

    ADS  Google Scholar 

  20. Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    ADS  Google Scholar 

  21. Hsieh, C.-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    ADS  Google Scholar 

  22. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photon. 5, 154–157 (2011).

    ADS  Google Scholar 

  23. Vellekoop, I. M., Cui, M. & Yang, C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012).

    ADS  Google Scholar 

  24. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (trove). Nature Photon. 7, 300–305 (2013).

    ADS  Google Scholar 

  25. Ma, C., Xu, X., Liu, Y. & Wang, L. V. Time-reversed adapted-perturbation (trap) optical focusing onto dynamic objects inside scattering media. Nat. Photon. 8, 931–936 (2014).

    ADS  Google Scholar 

  26. Zhou, E. H., Ruan, H., Yang, C. & Judkewitz, B. Focusing on moving targets through scattering samples. Optica 1, 227–232 (2014).

    ADS  Google Scholar 

  27. Ruan, H., Jang, M. & Yang, C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nat. Commun. 6, 1–8 (2015).

    ADS  Google Scholar 

  28. Ruan, H. et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica 4, 1337–1343 (2017).

    ADS  Google Scholar 

  29. Yang, J. et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Sci. Adv. 5, 1211 (2019).

    ADS  Google Scholar 

  30. Aizik, D., Gkioulekas, I. & Levin, A. Fluorescent wavefront shaping using incoherent iterative phase conjugation. Optica 9, 746–754 (2022).

    ADS  Google Scholar 

  31. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Google Scholar 

  32. Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    ADS  Google Scholar 

  33. Vesga, A. G. et al. Focusing large spectral bandwidths through scattering media. Opt. Express 27, 28384–28394 (2019).

    ADS  Google Scholar 

  34. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328 (1988).

    ADS  Google Scholar 

  35. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988).

    ADS  Google Scholar 

  36. Vellekoop, I. M. & Mosk, A. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    ADS  Google Scholar 

  37. Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

    ADS  Google Scholar 

  38. Hillman, T. R. et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep. 3, 1–5 (2013).

    Google Scholar 

  39. Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

  40. Popoff, S. M. et al. Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107, 263901 (2011).

    ADS  Google Scholar 

  41. Candes, E. J., Li, X. & Soltanolkotabi, M. Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inform. Theory 61, 1985–2007 (2015).

    MathSciNet  MATH  Google Scholar 

  42. Candes, E. J., Eldar, Y. C., Strohmer, T. & Voroninski, V. Phase retrieval via matrix completion. SIAM Rev. 57, 225–251 (2015).

    MathSciNet  MATH  Google Scholar 

  43. Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017).

    ADS  Google Scholar 

  44. De Santis, P., Gori, F., Guattari, G. & Palma, C. Synthesis of partially coherent fields. JOSA A 3, 1258–1262 (1986).

    ADS  Google Scholar 

  45. Rodenburg, B., Mirhosseini, M., Magaña-Loaiza, O. S. & Boyd, R. W. Experimental generation of an optical field with arbitrary spatial coherence properties. JOSA B 31, 51–55 (2014).

    ADS  Google Scholar 

  46. Tzang, O. et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nature Photon. 13, 788–793 (2019).

    ADS  Google Scholar 

  47. Barré, N. & Jesacher, A. Holographic beam shaping of partially coherent light. Optics Lett. 47, 425–428 (2022).

    ADS  Google Scholar 

  48. Kim, D. & Englund, D. R. Quantum reference beacon-guided superresolution optical focusing in complex media. Science 363, 528–531 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by H2020 Future and Emerging Technologies (grant no. 863203 to Y.B., H.B.d.A. and S.G.), European Research Council (grant no. 724473 to S.G.) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant no. 2022R1A6A3A03072108 to Y.B.).

Author information

Authors and Affiliations

Authors

Contributions

Y.B. conceived the idea. Y.B., H.B.d.A. and S.G. developed the concept and designed the experiments. Y.B. built the experimental set-up, performed the experiments and analysed the data. All of the authors discussed the results and wrote the paper.

Corresponding author

Correspondence to YoonSeok Baek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jacopo Bertolotti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7 and Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, Y., de Aguiar, H.B. & Gigan, S. Phase conjugation with spatially incoherent light in complex media. Nat. Photon. 17, 1114–1119 (2023). https://doi.org/10.1038/s41566-023-01254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01254-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing