Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unidirectional unpolarized luminescence emission via vortex excitation

Abstract

Controlling the direction of light emission on the subwavelength scale is a key capability for quantum information processing and optical imaging in photonics and biology1,2,3,4,5. The spin–orbit interaction of light is widely adopted for dynamically tuning the direction of circularly polarized photoluminescence (PL), but this is challenging to accomplish for many luminescence materials, which typically generate unpolarized luminescence. Here, we report optical control of unidirectional emission of unpolarized luminescence in a spatially symmetric nanopillar lattice assisted by photonic orbital angular momenta. The orientation of anti-Stokes shift PL emissions can be controlled by the helicity of incident vortex beams. The experimental directionality of unpolarized PL emission in the one-dimensional nanopillar lattice can reach 0.59, which is markedly stronger than that possible by a spin mechanism. Our findings thus offer a new promising approach for tuneable nanoscale optical control of emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of directional emission of unpolarized luminescence by vortex beams.
Fig. 2: Experimental measurements of unidirectional propagation in the nanopillar lattice.
Fig. 3: Numerical simulations of unidirectional propagation by vortex sources.
Fig. 4: OAM-dependent PL unidirectional emission.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  2. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    Article  ADS  Google Scholar 

  3. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  ADS  Google Scholar 

  4. Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photon. 12, 284–290 (2018).

    Article  ADS  Google Scholar 

  5. Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photon. 14, 543–548 (2020).

    Article  ADS  Google Scholar 

  6. Rong, K. et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. Nat. Nanotechnol. 15, 927–933 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  7. Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  8. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    Article  ADS  Google Scholar 

  9. Pan, D., Wei, H., Gao, L. & Xu, H. Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits. Phys. Rev. Lett. 117, 166803 (2016).

    Article  ADS  Google Scholar 

  10. Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    Article  ADS  Google Scholar 

  11. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Guo, Q. et al. Routing a chiral Raman signal based on spin-orbit interaction of light. Phys. Rev. Lett. 123, 183903 (2019).

    Article  ADS  Google Scholar 

  13. Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018).

    Article  ADS  Google Scholar 

  14. Shreiner, R., Hao, K., Butcher, A. & High, A. A. Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nat. Photon. 16, 330–336 (2022).

    Article  ADS  Google Scholar 

  15. Sun, L. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photon. 13, 180–184 (2019).

    Article  ADS  Google Scholar 

  16. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article  MathSciNet  Google Scholar 

  17. Deng, Y. et al. Circularly polarized luminescence from organic micro-/nano-structures. Light: Sci. Appl. 10, 1–18 (2021).

    Article  Google Scholar 

  18. Coles, R. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    Article  ADS  Google Scholar 

  19. Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    Article  ADS  Google Scholar 

  20. Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016).

    Article  ADS  Google Scholar 

  21. Luski, A. et al. Vortex beams of atoms and molecules. Science 373, 1105–1109 (2021).

    Article  ADS  Google Scholar 

  22. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  23. Ni, J. et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl Acad. Sci. USA 118, e2020055118 (2021).

    Article  Google Scholar 

  24. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  Google Scholar 

  26. Ouyang, X. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photon. 15, 901–907 (2021).

    Article  ADS  Google Scholar 

  27. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  Google Scholar 

  28. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  ADS  Google Scholar 

  29. Ren, H. et al. Orbital-angular-momentum-controlled hybrid nanowire circuit. Nano Lett. 21, 6220–6227 (2021).

    Article  ADS  Google Scholar 

  30. Bliokh, K. Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett. 97, 043901 (2006).

    Article  ADS  Google Scholar 

  31. Garbin, V. et al. Mie scattering distinguishes the topological charge of an optical vortex: a homage to Gustav Mie. New J. Phys. 11, 013046 (2009).

    Article  ADS  Google Scholar 

  32. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Inoue, T. & Hori, H. Theoretical treatment of electric and magnetic multipole radiation near a planar dielectric surface based on angular spectrum representation of vector field. Opt. Rev. 5, 295–302 (1998).

    Article  Google Scholar 

  34. McArthur, D., Yao, A. M. & Papoff, F. Scattering of light with angular momentum from an array of particles. Phys. Rev. Research 2, 013100 (2020).

    Article  ADS  Google Scholar 

  35. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article  Google Scholar 

  36. Qiao, X. et al. Higher-dimensional supersymmetric microlaser arrays. Science 372, 403–408 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ren, H., Li, X., Zhang, Q. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

    Article  ADS  Google Scholar 

  38. Kruk, S. et al. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol. 14, 126–130 (2019).

    Article  ADS  Google Scholar 

  39. Jin, Z. et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61927814, 52122511, 52075516, 61805230, 62105319 and U20A20290; W.D., J.L., S.J. and Y.H.), the USTC Research Funds of the Double First-Class Initiative (Grant No. YD2090002005; W.D.), the National Key R&D Program of China (Grant No. 2021YFF0502700; W.D.) and the Foundation of Equipment Development Department (Grant No. 6140922010901; W.D.). J.N. acknowledges support from the start-up funding of the University of Science and Technology of China and the CAS Talents Program. We thank the USTC Center for Micro and Nanoscale Research and Fabrication. C.W.Q. is supported by the National Research Foundation, Prime Minister’s Office, Singapore under Competitive Research Program Award NRF-CRP22-2019-0006.

Author information

Authors and Affiliations

Authors

Contributions

J.N. and C.W.Q. conceived the idea and developed the theory. S.J., S.L. and Z.W. performed the experiments. J.N. performed the simulations. J.N., Y.C., X.L. and S.J. analysed the data. J.N., C.W.Q. and D.W. wrote the manuscript. C.W.Q. and D.W. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dong Wu or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Notes 1–6, Table 1 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Ji, S., Wang, Z. et al. Unidirectional unpolarized luminescence emission via vortex excitation. Nat. Photon. 17, 601–606 (2023). https://doi.org/10.1038/s41566-023-01226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01226-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing