Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A double-tapered fibre array for pixel-dense gamma-ray imaging

Abstract

Luminescence intensity in photodetectors, radiation imagers and light-emitting diodes is proportional to the thickness of the light-emitting layer. However, a thick emitting layer reduces light output because of incoherent photon scattering and attenuation. Here we present the design of double-tapered optical-fibre arrays that can drastically increase the light output of thick light-emitting layers by progressively filling more propagation modes along the fibre’s depth. To enhance the light-collection efficiency and imaging resolution, the upper taper angle of each fibre is greater than the lower angle. By filling the fibre substrate with perovskite nanocrystals from a scale of micrometres thick to centimetres thick, large-scale pixel-dense X-ray or gamma-ray detector arrays can be fabricated. We demonstrate X-ray imaging with a spatial resolution of 22 lp mm−1. Pixelated gamma-ray imaging is also demonstrated using a nanocrystal scintillator film with a thickness of 4 mm and ~10,000 pixels under focused 6-MeV irradiation. Dynamic changes in the energy spectrum (5 keV to 10 MeV) and dose rate (3.5 nGy s−1 to 96 mGy s−1) can be conveniently monitored using a hemispherical fibre array dosimeter with a field of view of 150°. This study presents a high-throughput approach for fabricating thick emitter layers that could be applied to biomolecular or mechanical force sensing, medical imaging and ion beam therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural properties of transparent double-tapered optical-fibre arrays for directional light collection.
Fig. 2: Optical characterizations of the double-tapered optical-fibre array for photon recycling and high-resolution X-ray imaging.
Fig. 3: Gamma-ray imaging using a fibre-embedded perovskite scintillator film.
Fig. 4: Hemispherical dosimeters for X-ray and gamma-ray detection with improved sensitivity and a wider field of view.
Fig. 5: Stability tests of scintillator films with embedded optical-fibre arrays.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes are available from the corresponding authors upon reasonable request.

References

  1. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  ADS  Google Scholar 

  2. Cao, Z. et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray galactic sources. Nature 594, 33–36 (2021).

    Article  ADS  Google Scholar 

  3. Kataoka, J. et al. Recent progress of MPPC-based scintillation detectors in high precision X-ray and γ-ray imaging. Nucl. Instrum. Methods Phys. Res. A 784, 248–254 (2015).

    Article  ADS  Google Scholar 

  4. Franks, L. et al. Hard X-Ray, Gamma-Ray and Neutron Detector Physics XVII Vol. 9593 (SPIE, 2015).

  5. Oshima, T. et al. Development of a high-precision color γ-ray image sensor based on TSV-MPPC and diced scintillator arrays. Nucl. Instrum. Methods Phys. Res. A 803, 8–14 (2015).

    Article  ADS  Google Scholar 

  6. Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022).

    Article  Google Scholar 

  7. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    Article  ADS  Google Scholar 

  8. Zhao, J. et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photon. 14, 612–617 (2020).

    Article  ADS  Google Scholar 

  9. Gao, Y. et al. Ultrathin and ultrasensitive direct X-ray detector based on heterojunction phototransistors. Adv. Mater. 33, e2101717 (2021).

    Article  ADS  Google Scholar 

  10. Zhuang, R. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photon. 13, 602–608 (2019).

    Article  ADS  Google Scholar 

  11. Heo, J. H. et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 30, e1801743 (2018).

    Article  Google Scholar 

  12. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11, 726–732 (2017).

    Article  ADS  Google Scholar 

  13. Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photon. 11, 436–440 (2017).

    Article  ADS  Google Scholar 

  14. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  ADS  Google Scholar 

  15. Deumel, S. et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4, 681–688 (2021).

    Article  Google Scholar 

  16. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3 − xClx perovskite single crystals for γ-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    Article  ADS  Google Scholar 

  17. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15, 36–42 (2020).

    Article  ADS  Google Scholar 

  18. He, Y. et al. High spectral resolution of γ-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    Article  ADS  Google Scholar 

  19. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  ADS  Google Scholar 

  20. Büchele, P. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photon. 9, 843–848 (2015).

    Article  ADS  Google Scholar 

  21. Basirico, L. et al. Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V. Nat. Commun. 7, 13063 (2016).

    Article  ADS  Google Scholar 

  22. Ciavatti, A. et al. Toward low-voltage and bendable X-ray direct detectors based on organic semiconducting single crystals. Adv. Mater. 27, 7213–7220 (2015).

    Article  Google Scholar 

  23. Liu, X. et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Appl. Mater. Interfaces 13, 15383–15390 (2021).

    Article  Google Scholar 

  24. Mills, C. A. et al. Direct detection of 6-MV X-rays from a medical linear accelerator using a semiconducting polymer diode. Phys. Med. Biol. 58, 4471–4482 (2013).

    Article  Google Scholar 

  25. Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    Article  ADS  Google Scholar 

  26. Brodnik, G. M. et al. Optically synchronized fibre links using spectrally pure chip-scale lasers. Nat. Photon. 15, 588–593 (2021).

    Article  ADS  Google Scholar 

  27. Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    Article  ADS  Google Scholar 

  28. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article  ADS  Google Scholar 

  29. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  Google Scholar 

  30. Korposh, S. et al. Tapered optical fibre sensors: current trends and future perspectives. Sensors 19, 2294 (2019).

    Article  ADS  Google Scholar 

  31. Stranks, S. D. et al. The physics of light emission in halide perovskite devices. Adv. Mater. 31, e1803336 (2019).

    Article  Google Scholar 

  32. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  ADS  Google Scholar 

  33. Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

    Article  Google Scholar 

  34. Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

    Article  Google Scholar 

  35. Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Article  ADS  Google Scholar 

  36. Dong, Q. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  37. Fassl, P. et al. Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter 4, 1391–1412 (2021).

    Article  Google Scholar 

  38. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  ADS  Google Scholar 

  39. Yu, H., Chen, T., Han, Z., Fan, J. & Pei, Q. Liquid scintillators loaded with up to 40 weight percent cesium lead bromide quantum dots for gamma scintillation. ACS Appl. Nano Mater. 5, 14572–14581 (2022).

    Article  Google Scholar 

  40. Pan, L., Shrestha, S., Taylor, N., Nie, W. & Cao, L. R. Determination of X-ray detection limit and applications in perovskite X-ray detectors. Nat. Commun. 12, 5258 (2021).

    Article  ADS  Google Scholar 

  41. Zaffalon, M. L. et al. Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nat. Photon. 16, 860–868 (2022).

    Article  ADS  Google Scholar 

  42. Adams, R. & Zboray, R. Gamma radiography and tomography with a CCD camera and Co-60 source. Appl. Radiat. Isot. 127, 82–86 (2017).

    Article  Google Scholar 

  43. Jones, E. A., Phan, T. D., Blanchard, D. A. & Miley, A. Breast-specific γ-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view γ-camera. J. Nucl. Med. Technol. 37, 201–205 (2009).

    Article  Google Scholar 

  44. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  ADS  Google Scholar 

  45. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  ADS  Google Scholar 

  46. Faber, D. J. et al. Oxygen saturation-dependent absorption and scattering of blood. Phys. Rev. Lett. 93, 028102 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NUS NANONASH Program (NUHSRO/2020/002/413 NanoNash/LOA; R143000B43114) and National Research Foundation, Prime 225 Minister’s Office, Singapore under its Competitive Research Program (award no. NRF-CRP23-2019-0002) and under its NRF Investigatorship Programme (award no. NRF-NRFI05-2019-0003) and the RIE2025 Manufacturing, Trade and Connectivity (MTC) Programmatic Fund (award no. M21J9b0085).

Author information

Authors and Affiliations

Authors

Contributions

L.Y., B.H. and X.L. conceived and designed the project. X.L. supervised the project. H.Z. characterized the materials. L.Y. conducted the numerical simulations. B.H. performed device fabrication. B.H., L.Y. and H.Q.T. performed gamma-ray experiments. L.Y. and B.H. wrote the manuscript. X.L. edited the manuscript. All authors participated in the discussion and analysis of the manuscript.

Corresponding author

Correspondence to Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jiang Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figs. 1–12 and table 1.

Supplementary Video 1

Comparison of pixel-dense gamma-ray imaging with and without double-tapered fibre array.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Hou, B., Zhao, H. et al. A double-tapered fibre array for pixel-dense gamma-ray imaging. Nat. Photon. 17, 494–500 (2023). https://doi.org/10.1038/s41566-023-01204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01204-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing