Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum recoil in free-electron interactions with atomic lattices

Abstract

The emission of light from charged particles underlies a wealth of scientific phenomena and technological applications. Classical theory determines the emitted photon energy by assuming an undeflected charged particle trajectory. In 1940, Ginzburg pointed out that this assumption breaks down in quantum electrodynamics, resulting in shifts—known as quantum recoil—in outgoing photon energies from their classically predicted values. Since then, quantum recoil in free-electron light-emission processes, including Cherenkov radiation and Smith–Purcell radiation, has been well-studied in theory, but an experimental demonstration has remained elusive. Here we present an experimental demonstration of quantum recoil, showing that this quantum electrodynamical effect is not only observable at room temperature but also robust in the presence of other electron-scattering mechanisms. By scattering free electrons off the periodic two-dimensional atomic sheets of van der Waals materials in a tabletop platform, we show that the X-ray photon energy is accurately predicted only by quantum recoil theory. We show that quantum recoil can be enormous, to the point that a classically predicted X-ray photon is emitted as an extremely low-energy photon. We envisage quantum recoil as a means of precision control over outgoing photon and electron spectra, and show that quantum recoil can be tailored through a host of parameters: the electron energy, the atomic composition and the tilt angle of the van der Waals material. Our results pave the way to tabletop, room-temperature platforms for harnessing and investigating quantum electrodynamical effects in electron–photon interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum recoil and multimode X-ray generation in Smith–Purcell radiation.
Fig. 2: Quantum recoil for free electrons interacting with graphite and hexagonal boron nitride, respectively.
Fig. 3: Tuning quantum recoil in Smith–Purcell radiation.

Similar content being viewed by others

Data availability

The data represented in Figs. 13 are available as Supplementary Information files. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

All code that support the plots within this paper are available from the corresponding authors upon reasonable request.

References

  1. Frank, I. M. Doppler effect in a refractive medium. Bull. Russ. Acad. Sci. Phys. 6, 2 (1942).

    Google Scholar 

  2. Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953).

    Article  ADS  Google Scholar 

  3. Cherenkov, P. A. Visible emission of clean liquids by action of gamma radiation. Dokl. Akad. Nauk SSSR 2, 451–454 (1934).

    Google Scholar 

  4. Tamm, I. E. & Frank, I. M. Coherent visible radiation of fast electrons in a medium. Dokl. Akad. Nauk SSSR 14, 107–112 (1937).

    MATH  Google Scholar 

  5. Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  6. Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article  ADS  Google Scholar 

  7. Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).

    Article  ADS  Google Scholar 

  8. Adamo, G. et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).

    Article  ADS  Google Scholar 

  9. So, J. K. et al. Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett. 97, 151107 (2010).

    Article  ADS  Google Scholar 

  10. Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    Article  Google Scholar 

  11. Rivera, N., Wong, L. J., Joannopoulos, J. D., Soljačić, M. & Kaminer, I. Light emission based on nanophotonic vacuum forces. Nat. Phys. 15, 1284–1289 (2019).

    Article  Google Scholar 

  12. Yu, Y. et al. Transition radiation in photonic topological crystals: quasiresonant excitation of robust edge states by a moving charge. Phys. Rev. Lett. 123, 057402 (2019).

    Article  ADS  Google Scholar 

  13. Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).

    Article  Google Scholar 

  14. Lin, X. et al. A Brewster route to Cherenkov detectors. Nat. Commun. 2, 5554 (2021).

    Article  ADS  Google Scholar 

  15. Remez, R. et al. Observing the quantum wave nature of free electrons through spontaneous emission. Phys. Rev. Lett. 123, 060401 (2019).

    Article  ADS  Google Scholar 

  16. Nussupbekov, A. et al. Enhanced photon emission from free electron excitation of a nanowell. APL Photonics 6, 096101 (2021).

    Article  ADS  Google Scholar 

  17. Wang, Z., Yao, K., Chen, M., Chen, H. & Liu, Y. Manipulating Smith–Purcell emission with Babinet metasurfaces. Phys. Rev. Lett. 117, 157401 (2016).

    Article  ADS  Google Scholar 

  18. Haeusler, U., Seidling, M., Yousefi, P. & Hommelhoff, P. Boosting the efficiency of Smith–Purcell radiators using nanophotonic inverse design. ACS Photonics 9, 664–671 (2022).

    Article  Google Scholar 

  19. Roques-Carmes, C. et al. Free-electron–light interactions in nanophotonics. Preprint at https://arxiv.org/abs/2208.02368 (2022).

  20. Ye, Y. et al. Deep-ultraviolet Smith–Purcell radiation. Optica 6, 592–597 (2019).

    Article  ADS  Google Scholar 

  21. Shentcis, M. et al. Tunable free-electron X-ray radiation from van der Waals materials. Nat. Photonics 14, 686–692 (2020).

    Article  ADS  Google Scholar 

  22. Huang, S. et al. Enhanced versatility of table-top X-rays from van der Waals structures. Adv. Sci. 9, 2105401 (2022).

    Article  MathSciNet  Google Scholar 

  23. Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, 134803 (2013).

    Article  ADS  Google Scholar 

  24. Shim, H., Fan, L., Johnson, S. G. & Miller, O. D. Fundamental limits to near-field optical response over any bandwidth. Phys. Rev. X 9, 011043 (2019).

    Google Scholar 

  25. Ginzburg, V. L. Quantum theory of radiation of an electron uniformly moving in medium. Zh. Eksp. Teor. Fiz. 10, 589–600 (1940).

    Google Scholar 

  26. Neitz, N. & Di Piazza, A. Stochasticity effects in quantum radiation reaction. Phys. Rev. Lett. 111, 054802 (2013).

    Article  ADS  Google Scholar 

  27. Debus, A., Steiniger, K., Kling, P., Carmesin, C. M. & Sauerbrey, R. Realizing quantum free-electron lasers: a critical analysis of experimental challenges and theoretical limits. Phys. Scr. 94, 074001 (2019).

    Article  ADS  Google Scholar 

  28. Bonifacio, R., Piovella, N., Robb, G. R. M. & Schiavi, A. Quantum regime of free electron lasers starting from noise. Phys. Rev. Spec. Top. Accel. Beams 9, 090701 (2006).

    Article  ADS  Google Scholar 

  29. Baryshevsky, V. G. et al. Experimental observation of frequency tuning of X-ray radiation from nonrelativistic electrons in crystals. Phys. Lett. A 363, 448–452 (2007).

    Article  ADS  Google Scholar 

  30. Feranchuk, I. D., Ulyanenkov, A., Harada, J. & Spence, J. C. H. Parametric x-ray radiation and coherent bremsstrahlung from nonrelativistic electrons in crystals. Phys. Rev. E 62, 4225–4234 (2000).

    Article  ADS  Google Scholar 

  31. Baryshevsky, V. G. & Feranchuk, I. D. The X-ray radiation of ultrarelativistic electrons in a crystal. Phys. Lett. A 57, 183–185 (1976).

    Article  ADS  Google Scholar 

  32. Baryshevsky, V. G. & Feranchuk, I. D. Parametric X-rays from ultrarelativistic electrons in a crystal: theory and possibilities of practical utilization. J. Phys. 44, 913–922 (1983).

    Article  Google Scholar 

  33. Überall, H. High-energy interference effect of bremsstrahlung and pair production in crystals. Phys. Rev. 103, 1055–1067 (1956).

    Article  ADS  MATH  Google Scholar 

  34. Tan, Y. J., Pitchappa, P., Wang, N., Singh, R. & Wong, L. J. Space-time wave packets from Smith–Purcell radiation. Adv. Sci. 8, 2100925 (2021).

    Article  Google Scholar 

  35. Massuda, A. et al. Smith–Purcell radiation from low-energy electrons. ACS Photonics 5, 3513–3518 (2018).

    Article  Google Scholar 

  36. Talebi, N. Electron–light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Adv. Phys. X 3, 1499438 (2018).

    Google Scholar 

  37. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  38. Chahshouri, F., Taleb, M., Diekmann, F. K., Rossnagel, K. & Talebi, N. Interaction of excitons with Cherenkov radiation in WSe2 beyond the non-recoil approximation. J. Phys. D Appl. Phys. 55, 145101 (2022).

    Article  ADS  Google Scholar 

  39. Tsesses, S., Bartal, G. & Kaminer, I. Light generation via quantum interaction of electrons with periodic nanostructures. Phys. Rev. A 95, 013832 (2017).

    Article  ADS  Google Scholar 

  40. Sokolow, A. Quantum theory of Cherenkov effect. Dokl. Akad. Nauk SSSR 28, 415–417 (1940).

    MATH  Google Scholar 

  41. Cox, R. T. Momentum and energy of photon and electron in the Čerenkov radiation. Phys. Rev. 66, 106–107 (1944).

    Article  ADS  Google Scholar 

  42. Kaminer, I. et al. Quantum Čerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2016).

    Google Scholar 

  43. Sones, B., Danon, Y. & Block, R. C. X-ray imaging with parametric X-rays (PXR) from a lithium fluoride (LiF) crystal. Nucl. Instrum. Methods Phys. Res. A 560, 589–597 (2006).

    Article  ADS  Google Scholar 

  44. Çakmak, G. & Öztürk, T. Continuous synthesis of graphite with tunable interlayer distance. Diam. Relat. Mater. 96, 134–139 (2019).

    Article  ADS  Google Scholar 

  45. Roques-Carmes, C., Rivera, N., Joannopoulos, J. D., Soljačić, M. & Kaminer, I. Nonperturbative quantum electrodynamics in the Cherenkov effect. Phys. Rev. X 8, 041013 (2018).

    Google Scholar 

  46. Karnieli, A., Rivera, N., Arie, A. & Kaminer, I. The coherence of light is fundamentally tied to the quantum coherence of the emitting particle. Sci. Adv. 7, eabf8096 (2021).

    Article  ADS  Google Scholar 

  47. Pan, Y. & Gover, A. Spontaneous and stimulated radiative emission of modulated free-electron quantum wavepackets—semiclassical analysis. J. Phys. Commun. 2, 115026 (2018).

    Article  Google Scholar 

  48. Wong, L. J. et al. Control of quantum electrodynamical processes by shaping electron wavepackets. Nat. Commun. 12, 1700 (2021).

    Article  ADS  Google Scholar 

  49. Wong, L. J. & Kaminer, I. Prospects in X-ray science emerging from quantum optics and nanomaterials. Appl. Phys. Lett. 119, 130502 (2021).

    Article  ADS  Google Scholar 

  50. Roques-Carmes, C. et al. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun. 10, 3176 (2019).

    Article  ADS  Google Scholar 

  51. Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 10, 46–52 (2016).

    Article  ADS  Google Scholar 

  52. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  53. Wistisen, T. N., Di Piazza, A., Knudsen, H. V. & Uggerhøj, U. I. Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. 9, 795 (2018).

    Article  ADS  Google Scholar 

  54. Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    Article  Google Scholar 

  55. Ritchie, N. W. M., Newbury, D. E. & Davis, J. M. EDS measurements of X-ray intensity at WDS precision and accuracy using a silicon drift detector. Microsc. Microanal. 18, 892–904 (2012).

    Article  ADS  Google Scholar 

  56. Newbury, D. E. & Ritchie, N. W. M. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J. Mater. Sci. 50, 493–518 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Lim, Y. Y. Tay and I. Kaminer for helpful discussions. This project was partially supported by the National Research Foundation (Project ID NRF2020-NRF-ISF004-3525) and the Agency for Science, Technology and Research (A*STAR) Science & Engineering Research Council (Grant No. A1984c0043). We acknowledge the Facility for Analysis, Characterisation, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy/X-ray facilities. Z.L. acknowledges the support from National Research Foundation, Singapore, under its Competitive Research Programme (CRP) (NRF-CRP22-2019-0007 and NRF-CRP26-2021-0004). This research is also supported by A*STAR under its AME IRG Grant (Project No. A2083c0052). L.J.W. acknowledges the Nanyang Assistant Professorship Start-up Grant.

Author information

Authors and Affiliations

Authors

Contributions

S.H. led the project, designed and performed the electron microscopy experiments and analysed the data. R.D. and Z.L. prepared the samples. N.P. and S.H. developed the theory and performed the simulations. J.S.H. and C.B. contributed to the analysis of the experimental results. S.H. and L.J.W. wrote the paper, with inputs from all other authors. L.J.W. conceived the idea and supervised the project.

Corresponding author

Correspondence to Liang Jie Wong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Peter Baum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publishers note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–4 and Sections 1–11.

Source data

Source Data Fig. 1

Source data for Fig. 1c,d.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Duan, R., Pramanik, N. et al. Quantum recoil in free-electron interactions with atomic lattices. Nat. Photon. 17, 224–230 (2023). https://doi.org/10.1038/s41566-022-01132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01132-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing